I am trying to combine several for loops into a single loop or function. Each loop is evaluating if an individual is present at a site that is protected, and based on that is assigning a number (numbers represent sites) at each time step. After that, the results for each time step are stored in a matrix and later used in other analysis. The problem that I am having is that I am repeating the same loop several times to evaluate the different scenarios (10%, 50%, 100% of sites protected). Since I need to store my results for each scenario I can't think of a better way to simplify this into a single loop or function. Any ideas or suggestions will be appreciated. This is a very small and simplify idea of the problem. I would like to keep the structure of the loop since my original loop is using several if statements. The only thing that is changing is the proportion of sites that are protected.
N<-10 # number of sites
sites<-factor(seq(from=1,to=N))
sites10<-as.factor(sample(sites,N*1))
sites5<-as.factor(sample(sites,N*0.5))
sites1<-as.factor(sample(sites,N*0.1))
steps<-10
P.stay<-0.9
# storing results
result<-matrix(0,nrow=steps)
time.step<-seq(1,steps)
time.step<-data.frame(time.step)
time.step$event<-0
j<-numeric(steps)
j[1]<-sample(1:N,1)
time.step$event[1]<-j[1]
for(i in 1:(steps-1)){
if(j[i] %in% sites1){
if(rbinom(1,1,P.stay)==1){time.step$event[i+1]<-j[i+1]<-j[i]} else
time.step$event[i+1]<-0
}
time.step$event[i+1]<-j[i+1]<-sample(1:N,1)
}
results.sites1<-as.factor(result)
###
result<-matrix(0,nrow=steps)
time.step<-seq(1,steps)
time.step<-data.frame(time.step)
time.step$event<-0
j<-numeric(steps)
j[1]<-sample(1:N,1)
time.step$event[1]<-j[1]
for(i in 1:(steps-1)){
if(j[i] %in% sites5){
if(rbinom(1,1,P.stay)==1){time.step$event[i+1]<-j[i+1]<-j[i]} else
time.step$event[i+1]<-0
}
time.step$event[i+1]<-j[i+1]<-sample(1:N,1)
}
results.sites5<-as.factor(result)
###
result<-matrix(0,nrow=steps)
time.step<-seq(1,steps)
time.step<-data.frame(time.step)
time.step$event<-0
j<-numeric(steps)
j[1]<-sample(1:N,1)
time.step$event[1]<-j[1]
for(i in 1:(steps-1)){
if(j[i] %in% sites10){
if(rbinom(1,1,P.stay)==1){time.step$event[i+1]<-j[i+1]<-j[i]} else
time.step$event[i+1]<-0
}
time.step$event[i+1]<-j[i+1]<-sample(1:N,1)
}
results.sites10<-as.factor(result)
#
results.sites1
results.sites5
results.sites10