我有一个函数用于在 2D 矩阵(整数、值和总和的结构)中找到最佳路径,但它不记住最佳值,它只返回遍历的最低成本,一旦它下降到底部的矩阵。我们应该使用堆栈以某种方式记住这些最佳值,但不幸的是我不知道如何做到这一点。它是一种递归算法,因此很难分析。值用伪随机数(1 到 10)填充,并且 sum 被初始化为INT_MAX
. 这似乎有点类似于三叉树。
堆栈函数原型是:
stack_t stack_new(); // already done in main
void stack_delete(stack_t stack); // -||-
void stack_push(stack_t stack, stack_element_t elem);
stack_element_t stack_pop(stack_t stack);
stack_element_t stack_top(stack_t stack);
int stack_is_empty(stack_t stack);
/* recursively seeks the optimal path in a 2D matrix */
void traverse(struct path **matrix, unsigned row, unsigned col, int path_cost, int *min_cost, int *cnt, stack_t stack, FILE *f)
{
char buffer[16];
path_cost += matrix[row][col].value;
matrix[row][col].sum = path_cost;
(*cnt)++; // counting calls
fprintf(f, "call_counter: %d, min_cost: %s, path_cost: %d, value: %d, sum: %d\n", *cnt, *min_cost == INT_MAX ? "Inf" : itoa(*min_cost, buffer, 10), path_cost, matrix[row][col].value, matrix[row][col].sum); // logging
if(matrix[row][col].sum > *min_cost) // if we've been here before and it wasn't as costly, return
{
return;
}
if(row == MATRIX_ROW - 1) // if we're at the bottom of the matrix
{
if(path_cost < *min_cost)
{
*min_cost = path_cost;
}
return;
}
if (col < MATRIX_COL - 1) // go down and right
traverse(matrix, row + 1, col + 1, path_cost, min_cost, cnt, stack, f);
traverse(matrix, row + 1, col, path_cost, min_cost, cnt, stack, f); // go down
if (col > 0) // go down and left
traverse(matrix, row + 1, col - 1, path_cost, min_cost, cnt, stack, f);
}