0

我在 R 中使用了一个函数,它为我绘制了一个完整的条形图,如图所示。

在此处输入图像描述

我实际上正在寻找更高级的东西。无论如何,R 中是否可以检测到 2 个种群相遇的点,然后为整个事物绘制一条最佳拟合线,就像在这张图片中一样,最后,打印这条线的斜率值!

在此处输入图像描述

这是我用来生成条形图的命令

##o is a predefined histogram
## x33 is a pre-defined table
barplot(x33(x33/o$counts*100)

抱歉,这花了一点时间

> dput(x33)
structure(c(0.165, 0.161, 0.263, 0.196, 0.183, 0.128, 0.123, 
0.144, 0.093, 0.196, 0.179, 0.132, 0.109, 0.15, 0.186, 0.158, 
0.209, 0.179, 0.145, 0.156, 0.102, 0.174, 0.189, 0.189, 0.191, 
0.191, 0.204, 0.204, 0.17, 0.147, 0.143, 0.171, 0.196, 0.24, 
0.146, 0.131, 0.167, 0.13, 0.136, 0.148, 0.163, 0.168, 0.14, 
0.19, 0.174, 0.144, 0.231, 0.167, 0.193, 0.178, 0.155, 0.153, 
0.181, 0.119, 0.14, 0.169, 0.172, 0.204, 0.181, 0.193, 0.175, 
0.175, 0.177, 0.192, 0.193, 0.161, 0.155, 0.156, 0.185, 0.137, 
0.116, 0.185, 0.185, 0.125, 0.183, 0.184, 0.124, 0.131, 0.206, 
0.151, 0.141, 0.126, 0.163, 0.211, 0.157, 0.16, 0.132, 0.212, 
0.221, 0.149, 0.184, 0.209, 0.197, 0.226, 0.182, 0.123, 0.203, 
0.155, 0.137, 0.15, 0.151, 0.118, 0.174, 0.158, 0.2, 0.194, 0.163, 
0.197, 0.145, 0.107, 0.171, 0.207, 0.1, 0.174, 0.199, 0.093, 
0.149, 0.191, 0.153, 0.191, 0.159, 0.159, 0.107, 0.159, 0.135, 
0.186, 0.133, 0.158, 0.164, 0.276, 0.192, 0.146, 0.098, 0.181, 
0.163, 0.137, 0.141, 0.158, 0.169, 0.164, 0.142, 0.174, 0.107, 
0.13, 0.178, 0.166, 0.156, 0.116, 0.192, 0.157, 0.166, 0.158, 
0.168, 0.135, 0.146, 0.184, 0.179, 0.185, 0.152, 0.244, 0.144, 
0.191, 0.2, 0.155, 0.179, 0.186, 0.227, 0.277, 0.263, 0.156, 
0.172, 0.148, 0.131, 0.169, 0.234, 0.159, 0.17, 0.138, 0.155, 
0.15, 0.29, 0.126, 0.165, 0.153, 0.196, 0.187, 0.183, 0.18, 0.15, 
0.096, 0.088, 0.19, 0.178, 0.179, 0.174, 0.19, 0.159, 0.149, 
0.158, 0.18, 0.16, 0.16, 0.102, 0.163, 0.162, 0.153, 0.151, 0.174, 
0.22, 0.165, 0.107, 0.182, 0.148, 0.091, 0.084, 0.121, 0.19, 
0.189, 0.167, 0.208, 0.163, 0.157, 0.17, 0.222, 0.123, 0.202, 
0.245, 0.158, 0.155, 0.156, 0.173, 0.13, 0.186, 0.193, 0.137, 
0.14, 0.19, 0.19, 0.246, 0.124, 0.19, 0.177, 0.149, 0.11, 0.13, 
0.127, 0.174, 0.176, 0.295, 0.16, 0.171, 0.172, 0.194, 0.144, 
0.148, 0.202, 0.164, 0.15, 0.165, 0.162, 0.162, 0.202, 0.181, 
0.156, 0.156, 0.15, 0.138, 0.135, 0.185, 0.138, 0.184, 0.136, 
0.121, 0.126, 0.16, 0.144, 0.165, 0.148, 0.156, 0.163, 0.116, 
0.156, 0.151, 0.118, 0.172, 0.132, 0.089, 0.159, 0.135, 0.17, 
0.155, 0.296, 0.147, 0.12, 0.144, 0.115, 0.124, 0.142, 0.183, 
0.193, 0.165, 0.121, 0.191, 0.175, 0.147, 0.172, 0.189, 0.216, 
0.192, 0.18, 0.145, 0.144, 0.203, 0.156, 0.174, 0.166, 0.144, 
0.284, 0.263, 0.23, 0.112, 0.164, 0.153, 0.134, 0.161, 0.186, 
0.187, 0.141, 0.141, 0.159, 0.181, 0.165, 0.155, 0.129, 0.264, 
0.134, 0.216, 0.174, 0.192, 0.198, 0.203, 0.162, 0.201, 0.181, 
0.127, 0.135, 0.15, 0.205, 0.185, 0.191, 0.15, 0.12, 0.086, 0.151, 
0.155, 0.17, 0.17, 0.151, 0.115, 0.194, 0.127, 0.131, 0.186, 
0.18, 0.112, 0.164, 0.205, 0.212, 0.133, 0.207, 0.167, 0.164, 
0.121, 0.179, 0.196, 0.188, 0.182, 0.179, 0.179, 0.177, 0.175, 
0.173, 0.17, 0.167, 0.165, 0.147, 0.153, 0.189, 0.161, 0.149, 
0.141, 0.203, 0.203, 0.185, 0.141, 0.13, 0.103, 0.276, 0.184, 
0.257, 0.208, 0.154, 0.171, 0.16, 0.202, 0.158, 0.176, 0.118, 
0.129, 0.138, 0.14, 0.127, 0.127, 0.13, 0.093, 0.094, 0.094, 
0.191, 0.181, 0.187, 0.185, 0.125, 0.185, 0.176, 0.177, 0.153, 
0.162, 0.149, 0.137, 0.161, 0.146, 0.189, 0.171, 0.174, 0.139, 
0.171, 0.147, 0.129, 0.147, 0.223, 0.173, 0.171, 0.172, 0.165, 
0.212, 0.196, 0.169, 0.145, 0.128, 0.143, 0.153, 0.179, 0.171, 
0.156, 0.204, 0.169, 0.194, 0.154, 0.164, 0.147, 0.185, 0.168, 
0.12, 0.125, 0.097, 0.127, 0.127, 0.188, 0.151, 0.127, 0.188, 
0.302, 0.136, 0.121, 0.128, 0.137, 0.127, 0.109, 0.121, 0.134, 
0.163, 0.175, 0.133, 0.087, 0.149, 0.166, 0.145, 0.124, 0.222, 
0.184, 0.317, 0.126, 0.096, 0.175, 0.162, 0.117, 0.156, 0.132, 
0.131, 0.115, 0.125, 0.145, 0.127, 0.114, 0.122, 0.189, 0.094, 
0.157, 0.169, 0.147, 0.143, 0.11, 0.141, 0.151, 0.147, 0.119, 
0.131, 0.128, 0.134, 0.158, 0.178, 0.144, 0.145, 0.145, 0.135, 
0.159, 0.14, 0.168, 0.11, 0.124, 0.106, 0.142, 0.175, 0.119, 
0.149, 0.156, 0.104, 0.162, 0.127, 0.169, 0.08, 0.177, 0.152, 
0.163, 0.17, 0.138, 0.152, 0.097, 0.124, 0.241, 0.139, 0.146, 
0.149, 0.102, 0.137, 0.132, 0.217, 0.129, 0.171, 0.123, 0.127, 
0.103, 0.131, 0.154, 0.137, 0.149, 0.136, 0.149, 0.131, 0.139, 
0.099, 0.09, 0.137, 0.147, 0.129, 0.188, 0.13, 0.149, 0.142, 
0.15, 0.144, 0.161, 0.085, 0.14, 0.174, 0.162, 0.079, 0.193, 
0.157, 0.158, 0.162, 0.125, 0.116, 0.131, 0.143, 0.134, 0.182, 
0.138, 0.113, 0.167, 0.096, 0.14, 0.154, 0.153, 0.153, 0.132, 
0.15, 0.09, 0.2, 0.166, 0.133, 0.165, 0.211, 0.109, 0.135, 0.062, 
0.179, 0.156, 0.122, 0.114, 0.154, 0.128, 0.089, 0.127, 0.101, 
0.173, 0.103, 0.142, 0.106, 0.144, 0.117, 0.102, 0.104, 0.171, 
0.138, 0.131, 0.126, 0.094, 0.132, 0.164, 0.097, 0.12, 0.082, 
0.144, 0.139, 0.135, 0.207, 0.118, 0.147, 0.192, 0.122, 0.132, 
0.158, 0.146, 0.149, 0.151, 0.067, 0.12, 0.145, 0.133, 0.101, 
0.14, 0.159, 0.16, 0.166, 0.117, 0.087, 0.163, 0.15, 0.157, 0.124, 
0.162, 0.136, 0.113, 0.142, 0.174, 0.148, 0.178, 0.149, 0.131, 
0.139, 0.143, 0.136, 0.18, 0.174, 0.116, 0.142, 0.131, 0.097, 
0.1, 0.114, 0.127, 0.162, 0.125, 0.087, 0.114, 0.138, 0.148, 
0.13, 0.155, 0.152, 0.131, 0.1, 0.147, 0.121, 0.122, 0.141, 0.086, 
0.179, 0.132, 0.131, 0.11, 0.362, 0.131, 0.169, 0.195, 0.109, 
0.115, 0.112, 0.125, 0.113, 0.131, 0.145, 0.124, 0.118, 0.126, 
0.116, 0.159, 0.113, 0.152, 0.138, 0.153, 0.121, 0.152, 0.152, 
0.142, 0.147, 0.17, 0.171, 0.153, 0.231, 0.091, 0.132, 0.195, 
0.171, 0.147, 0.151, 0.127, 0.099, 0.098, 0.135, 0.129, 0.143, 
0.178, 0.169, 0.141, 0.151, 0.141, 0.143, 0.125, 0.137, 0.149, 
0.125, 0.147, 0.19, 0.086, 0.131, 0.071, 0.132, 0.124, 0.166, 
0.099, 0.099, 0.096, 0.116, 0.168, 0.163, 0.087, 0.091, 0.118, 
0.127, 0.118, 0.125, 0.137, 0.166, 0.108, 0.09, 0.144, 0.137, 
0.089, 0.099, 0.094, 0.177, 0.188, 0.175, 0.191, 0.159, 0.145, 
0.135, 0.164, 0.146, 0.115, 0.115, 0.113, 0.143, 0.148, 0.118, 
0.132, 0.083, 0.092, 0.155, 0.148, 0.124, 0.131, 0.117, 0.117, 
0.066, 0.123, 0.159, 0.182, 0.151, 0.199, 0.133, 0.149, 0.132, 
0.145, 0.139, 0.099, 0.1, 0.11, 0.165, 0.149, 0.136, 0.155, 0.124, 
0.129, 0.117, 0.138, 0.248, 0.146, 0.13, 0.173, 0.167, 0.117, 
0.113, 0.181, 0.096, 0.12, 0.09, 0.149, 0.168, 0.103, 0.15, 0.105, 
0.095, 0.111, 0.139, 0.126, 0.109, 0.155, 0.121, 0.125, 0.131, 
0.11, 0.143, 0.153, 0.131, 0.143, 0.133, 0.162, 0.162, 0.1, 0.102, 
0.172, 0.16, 0.144, 0.131, 0.134, 0.112, 0.103, 0.111, 0.149, 
0.141, 0.236, 0.107, 0.123, 0.194, 0.224, 0.073, 0.142, 0.136, 
0.156, 0.171, 0.098, 0.127, 0.14, 0.137, 0.112, 0.188, 0.123, 
0.165, 0.134, 0.121, 0.123, 0.111, 0.114, 0.163, 0.115, 0.152, 
0.121, 0.161, 0.13, 0.137, 0.102, 0.115, 0.12, 0.076, 0.108, 
0.161, 0.112, 0.139, 0.155, 0.135, 0.193, 0.15, 0.142, 0.086, 
0.16, 0.148, 0.161, 0.172, 0.112, 0.169, 0.099, 0.078, 0.092, 
0.083, 0.079, 0.064, 0.122, 0.144, 0.144, 0.093, 0.092, 0.171, 
0.136, 0.148, 0.233, 0.124, 0.164, 0.101, 0.091, 0.089, 0.165, 
0.109, 0.138, 0.161, 0.152, 0.161, 0.12, 0.186, 0.193, 0.102, 
0.144, 0.171, 0.322, 0.221, 0.196, 0.11, 0.106, 0.095, 0.158, 
0.148, 0.115, 0.109, 0.164, 0.136, 0.129, 0.129, 0.156, 0.104, 
0.104, 0.184, 0.116, 0.123, 0.116, 0.119, 0.162, 0.162, 0.119, 
0.195, 0.195, 0.158, 0.068, 0.088, 0.112, 0.15, 0.097, 0.097, 
0.102, 0.126, 0.118, 0.141, 0.105, 0.127, 0.17, 0.09, 0.143, 
0.131, 0.171, 0.16, 0.117, 0.155, 0.164, 0.192, 0.144, 0.16, 
0.099, 0.097, 0.131, 0.078, 0.103, 0.1, 0.086, 0.109, 0.195, 
0.142, 0.128, 0.097, 0.123, 0.142, 0.185, 0.136, 0.176, 0.176, 
0.089, 0.161, 0.132, 0.112, 0.118, 0.122, 0.096, 0.137, 0.168, 
0.146, 0.113, 0.112, 0.207, 0.145, 0.08, 0.162, 0.098, 0.238, 
0.152, 0.151, 0.135, 0.133, 0.094, 0.096, 0.133, 0.159, 0.112, 
0.158, 0.126, 0.137, 0.095, 0.111, 0.185, 0.185, 0.102, 0.216, 
0.119, 0.162, 0.211, 0.155, 0.18, 0.14, 0.141, 0.104, 0.121, 
0.157, 0.157, 0.157, 0.088, 0.114, 0.135, 0.188, 0.138, 0.138, 
0.173, 0.131, 0.151, 0.179, 0.116, 0.159, 0.149, 0.111, 0.096, 
0.083, 0.083, 0.146, 0.108, 0.136, 0.094, 0.151, 0.121, 0.1, 
0.119, 0.103, 0.131, 0.123, 0.141, 0.146, 0.115, 0.1, 0.186, 
0.175, 0.148, 0.105, 0.169, 0.136, 0.157, 0.094, 0.141, 0.183, 
0.126, 0.123, 0.108, 0.123, 0.098, 0.151, 0.208, 0.114, 0.123, 
0.127, 0.13, 0.1, 0.125, 0.128, 0.139, 0.151, 0.168, 0.124, 0.129, 
0.141, 0.139, 0.123, 0.141, 0.112, 0.118, 0.154, 0.112, 0.134, 
0.11, 0.214, 0.145, 0.12, 0.168, 0.203, 0.123, 0.155, 0.122, 
0.159, 0.135, 0.088, 0.152, 0.138, 0.143, 0.163, 0.098, 0.117, 
0.108, 0.114, 0.124, 0.144, 0.11, 0.151, 0.181, 0.178, 0.128, 
0.13, 0.17, 0.103, 0.096, 0.133, 0.109, 0.13, 0.131, 0.188, 0.144, 
0.139, 0.13, 0.083, 0.112, 0.162, 0.103, 0.082, 0.156, 0.162, 
0.155, 0.142, 0.098, 0.08, 0.14, 0.128, 0.091, 0.102, 0.205, 
0.144, 0.14, 0.112, 0.107, 0.141, 0.11, 0.151, 0.151, 0.146, 
0.197, 0.156, 0.196, 0.117, 0.131, 0.116, 0.114, 0.09, 0.093, 
0.295, 0.182, 0.167, 0.176, 0.171, 0.136, 0.121, 0.181, 0.173, 
0.161, 0.108, 0.093, 0.092, 0.086, 0.213, 0.176, 0.112, 0.122, 
0.099, 0.155, 0.097, 0.154, 0.102, 0.153, 0.167, 0.132, 0.152, 
0.155, 0.105, 0.105, 0.157, 0.147, 0.113, 0.162, 0.094, 0.092, 
0.092, 0.098, 0.132, 0.192, 0.12, 0.122, 0.177, 0.111, 0.105, 
0.1, 0.149, 0.133, 0.116, 0.101, 0.14, 0.144, 0.12, 0.11, 0.221, 
0.14, 0.143, 0.134, 0.14, 0.129, 0.185, 0.109, 0.177, 0.118, 
0.109, 0.135, 0.11, 0.132, 0.127, 0.098, 0.153, 0.173, 0.239, 
0.154, 0.103, 0.136, 0.145, 0.124, 0.166, 0.135, 0.107, 0.133, 
0.124, 0.116, 0.103, 0.103, 0.154, 0.141, 0.138, 0.145, 0.161, 
0.17, 0.122, 0.123, 0.116, 0.14, 0.153, 0.099, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), .Dim = c(1324L, 
2L), .Dimnames = list(NULL, c("c1", "c2")))

o 的命令(在函数内)

o = hist(x, breaks = break1, plot = FALSE, include.lowest=T)
t = table(cut(x, breaks = bigbreak,include.lowest=T), factor(x33$c1, 
levels = c("1", "2")))
4

2 回答 2

2

您应该能够在标准barplot函数中完成所有这些操作。示例代码在这里:

x <- 1:10
y1 <- rnorm(10)
y2 <- rnorm(10)
y.mat <- rbind(y1, y2)
mybar <- barplot(y.mat)
mylm <- lm(y1 ~ mybar )
abline(mylm$coef)

您可以稍微修改它以匹配您的数据(如果您希望它们都相同,您可能需要标准化高度),但这应该有效。

于 2013-05-23T13:50:50.423 回答
2

让我们创建一些最小的可重现示例:

> set.seed(9)
> df <- data.frame(
    a = sample(0:10, 100, replace = TRUE),
    b = sample(0:1, 100, replace = TRUE)
    )
> dft <- table(df)

返回:

> dft
    b
a    0 1
  0  2 4
  1  7 5
  2  9 6
  3  1 5
  4  7 5
  5  4 4
  6  3 2
  7  5 3
  8  4 1
  9  4 6
  10 6 7

我们仍然需要计算行百分比,例如:

> (dft <- t(dft / rowSums(dft)))
   a
b           0         1         2         3         4         5         6         7         8         9        10
  0 0.3333333 0.5833333 0.6000000 0.1666667 0.5833333 0.5000000 0.6000000 0.6250000 0.8000000 0.4000000 0.4615385
  1 0.6666667 0.4166667 0.4000000 0.8333333 0.4166667 0.5000000 0.4000000 0.3750000 0.2000000 0.6000000 0.5384615

这可以很容易地绘制出来:

> barplot(dft, col = c('orange', 'green'))

条形图

让我们计算拟合线的斜率:

> df <- as.data.frame(dft)
> df <- df[which(df$b == 0), ]
> (fit <- lm(Freq ~ as.numeric(a), df))

Call:
lm(formula = Freq ~ as.numeric(a), data = df)

Coefficients:
  (Intercept)  as.numeric(a)  
       0.4353         0.0131  

所以我们只需要将它添加到情节中:

abline(fit, col = "red")

带有 abline 的条形图

于 2013-05-23T13:57:35.993 回答