我有一个 data.frame(附加),其中有 ~537 行,我想从中绘制一些直方图。facet_wrap
我想将数据框细分为 50 或 100 个块,并使用in并排绘制直方图ggplot2
。绘图没问题,但我不确定在 R 中处理这个简单任务的最佳方法是什么。我知道我可以在 data.frame 中添加一个额外的列,例如 data$ID = 1 ,这将为所有行。是否有一些方便的功能,我可以设置data[1:50,]$ID
= 1, data[51:100,]$ID
= 2 等但以更优雅的方式
structure(list(stress_score_delta = c(1L, 1L, 0L, -3L, 0L, 0L,
0L, -2L, 0L, -5L, -3L, -3L, -4L, 0L, -1L, 0L, 0L, -3L, -4L, 1L,
-3L, -4L, -5L, -1L, -2L, -3L, -1L, -2L, -3L, -10L, -5L, 1L, -2L,
-1L, -2L, -2L, 0L, -3L, -3L, 0L, -1L, -1L, 2L, -2L, -3L, -1L,
0L, 0L, -2L, -13L, 1L, -1L, -1L, -3L, -1L, 4L, 2L, 0L, -2L, 0L,
-4L, 2L, -1L, -2L, -3L, -2L, -4L, 1L, 0L, 2L, 2L, 0L, 2L, 2L,
0L, 1L, 3L, -2L, 3L, 2L, 0L, 1L, -2L, 2L, -2L, -2L, 0L, 0L, 1L,
-1L, -2L, -1L, 2L, 0L, -2L, 0L, -4L, -6L, -1L, -1L, -2L, -1L,
-3L, -1L, -2L, 0L, -1L, 0L, -1L, -4L, -4L, 0L, -5L, -3L, -4L,
-1L, -1L, 2L, 1L, -9L, -5L, NA, -5L, -4L, -6L, -2L, -7L, -3L,
-2L, -5L, -1L, -4L, -3L, 1L, -6L, -8L, -3L, 0L, 3L, -1L, -3L,
-3L, -3L, -4L, -5L, -4L, -2L, 1L, -3L, -1L, 0L, -6L, -1L, -11L,
-11L, -7L, 2L, 0L, -2L, 0L, -2L, 5L, -4L, 0L, -1L, 2L, 0L, -1L,
-2L, -7L, -2L, -2L, 0L, 4L, -5L, 0L, -5L, -3L, -2L, -2L, -2L,
-6L, -1L, 0L, -1L, -2L, -1L, -2L, -2L, -1L, -5L, 1L, 2L, -1L,
2L, -1L, 3L, -1L, -2L, -2L, 0L, 0L, -3L, -2L, -1L, -1L, -2L,
0L, -3L, -1L, -5L, -1L, -2L, -1L, -5L, -2L, 0L, 0L, -1L, -1L,
-1L, 2L, -1L, -4L, -2L, -4L, -2L, -1L, -7L, -3L, 0L, -1L, -3L,
-1L, -2L, -1L, -1L, 0L, -5L, -1L, -4L, -12L, -3L, -2L, 0L, -2L,
-4L, 0L, -4L, -2L, -2L, -1L, 0L, -5L, 0L, -3L, -3L, 0L, -1L,
0L, 2L, 1L, -6L, 1L, -2L, -1L, -3L, -4L, -2L, -3L, -1L, -1L,
0L, -4L, -2L, 0L, -1L, -6L, -1L, -2L, -1L, -4L, 2L, -1L, -2L,
-1L, -4L, -2L, -2L, -3L, -4L, -2L, -4L, -3L, -2L, -3L, 0L, -4L,
0L, -10L, -3L, -5L, -2L, -2L, -2L, -6L, -2L, -4L, 2L, 3L, 0L,
0L, 4L, -1L, -1L, -3L, -1L, 2L, -1L, -3L, -3L, -3L, -5L, -7L,
-5L, -4L, -2L, -3L, 4L, -2L, 1L, 0L, -1L, -1L, -2L, 1L, -10L,
0L, -5L, -2L, 0L, -3L, -5L, 4L, -1L, 1L, 0L, -1L, 1L, -2L, 3L,
-1L, -1L, -3L, -5L, -2L, -3L, 2L, -4L, -1L, -1L, 0L, 0L, -3L,
0L, -2L, -2L, -6L, -5L, 0L, 1L, -1L, 0L, 0L, -1L, 2L, -1L, -1L,
0L, -2L, -2L, -5L, -1L, 0L, -1L, -4L, -4L, -3L, -7L, -3L, -1L,
-1L, -2L, -2L, 0L, 1L, 2L, -1L, -2L, NA, NA, 0L, 1L, NA, 1L,
-1L, 1L, -3L, -1L, 1L, -4L, -2L, 2L, -5L, -1L, -1L, 0L, -2L,
-2L, 2L, -2L, -1L, -1L, -1L, 1L, -3L, 0L, -1L, -1L, -2L, 1L,
-2L, -1L, -1L, -2L, -1L, -1L, -3L, -11L, -2L, -1L, -1L, -3L,
0L, -1L, 0L, 1L, 4L, 0L, -1L, -1L, -4L, -1L, -3L, -2L, -1L, -2L,
0L, -4L, 0L, -5L, -1L, -2L, -3L, -1L, -5L, 0L, 0L, 0L, -1L, -2L,
0L, 0L, 1L, 2L, -2L, 1L, 0L, 1L, 0L, 1L, 0L, -2L, -5L, -3L, -1L,
-1L, -1L, -2L, 0L, -1L, -2L, 0L, -1L, 1L, -5L, -3L, -3L, 0L,
-7L, -1L, 2L, 1L, -1L, -3L, -3L, 0L, 0L, -1L, -4L, -1L, 0L, -1L,
-4L, 0L, -10L, 0L, 0L, 1L, -3L, -1L, -2L, -8L, -2L, 0L, -3L,
-1L, 0L, 0L, -2L, -5L, -4L, -1L, -2L, -2L, -1L, -1L), isch_score_delta = c(0L,
0L, 0L, -1L, 0L, 0L, 1L, 1L, 3L, 0L, 1L, 1L, 0L, 0L, 2L, 0L,
1L, -2L, 1L, -1L, -1L, 2L, 0L, 0L, 0L, 0L, -1L, -2L, -2L, -2L,
-4L, 0L, -2L, -2L, -1L, 3L, 0L, -2L, -1L, -1L, 2L, 0L, 1L, -3L,
0L, 0L, 3L, -1L, -2L, 0L, 0L, -1L, 0L, -4L, 1L, -3L, 2L, 2L,
0L, 0L, -3L, 1L, 0L, 0L, -1L, -2L, -5L, 0L, -1L, 0L, -1L, 0L,
3L, 2L, -1L, 0L, 1L, 1L, 3L, 3L, -1L, -1L, 0L, 3L, 8L, 0L, 1L,
2L, 4L, 0L, -2L, 1L, 0L, 2L, -1L, 0L, 2L, -2L, 0L, -1L, 2L, 0L,
-2L, -2L, 3L, 0L, 3L, 2L, -2L, -2L, -2L, 3L, 2L, 0L, 0L, -1L,
1L, 4L, 1L, -4L, -2L, NA, -1L, -3L, -2L, -2L, -3L, 0L, 1L, -3L,
0L, -4L, 0L, 1L, -2L, 0L, -1L, 1L, 0L, 3L, -3L, -2L, -2L, -1L,
-1L, -4L, -1L, 1L, -2L, -2L, 1L, -1L, -1L, -4L, -5L, -9L, -2L,
3L, -2L, 1L, 0L, 7L, 0L, 1L, 0L, 3L, 2L, 1L, -3L, 0L, -1L, -2L,
2L, 6L, 1L, 1L, -1L, -1L, -1L, 0L, 0L, -3L, -2L, 1L, 0L, 0L,
1L, 0L, -1L, 0L, -4L, 0L, 0L, 0L, 1L, -1L, -3L, 1L, -5L, 0L,
0L, 0L, -1L, 2L, 0L, 0L, 0L, 2L, 0L, 3L, 0L, 0L, -1L, 0L, -1L,
0L, 0L, 1L, 0L, 0L, -1L, 2L, 0L, 0L, 1L, -1L, 0L, 2L, -3L, -1L,
1L, 0L, -1L, 0L, 0L, -1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, -1L, 0L,
-2L, 2L, 2L, 0L, -2L, 1L, 1L, -1L, -2L, 0L, -1L, -3L, 0L, 1L,
-1L, 2L, -1L, -7L, 0L, 1L, 1L, -1L, 0L, 0L, 1L, 0L, 1L, -1L,
-2L, 0L, 0L, 2L, 0L, 1L, -6L, -1L, 0L, 5L, 0L, -5L, 0L, 2L, 0L,
-1L, 3L, -2L, -1L, -4L, -2L, -2L, -1L, 1L, -1L, 2L, -3L, -4L,
-2L, -2L, -2L, -2L, -6L, 0L, 1L, 0L, 0L, 0L, 2L, 5L, 2L, 0L,
0L, 1L, 5L, 0L, -2L, 3L, -1L, -1L, 0L, 0L, 0L, -1L, 0L, 2L, 2L,
2L, 1L, -1L, 0L, -1L, 2L, -6L, 0L, -1L, -3L, -1L, 0L, -3L, 2L,
0L, 0L, 0L, 0L, -4L, 0L, 2L, -1L, 2L, -2L, -2L, 1L, -1L, 2L,
-2L, 0L, -2L, 2L, 2L, 1L, 0L, 1L, -2L, -1L, 1L, 2L, 0L, 0L, 0L,
4L, -1L, 2L, 0L, -2L, 0L, 0L, -1L, -3L, 1L, -1L, 1L, 0L, 2L,
0L, 2L, -1L, 3L, 0L, 0L, -3L, -1L, 4L, 1L, -2L, 0L, NA, NA, 1L,
0L, NA, 2L, 2L, -1L, 1L, 2L, 0L, -5L, -3L, 1L, -1L, 0L, 0L, -1L,
0L, -2L, 2L, 1L, -1L, -1L, -1L, -1L, -2L, 0L, 1L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, -1L, -1L, -1L, 0L, -2L, 3L, 1L, 0L, 0L, -2L,
0L, 2L, 1L, 2L, -1L, -1L, -1L, 1L, -1L, -2L, -1L, 0L, 0L, -1L,
-1L, -2L, -1L, -1L, 1L, 0L, -2L, 0L, 0L, 1L, 0L, 0L, 2L, -1L,
1L, 2L, 1L, 0L, 1L, 2L, 0L, 1L, 1L, 0L, -1L, -1L, 1L, 2L, 0L,
0L, 1L, 0L, 0L, 1L, -1L, 1L, -2L, 0L, -1L, 0L, -4L, 1L, 3L, 1L,
-2L, -2L, 0L, 0L, 1L, -2L, -4L, -1L, 2L, -1L, -2L, 0L, 0L, 1L,
3L, 2L, -2L, 1L, 0L, -3L, -1L, 0L, 0L, -1L, 1L, 1L, -1L, -2L,
2L, 1L, 0L, -1L, 0L, -1L), num = 1:537), .Names = c("stress_score_delta",
"isch_score_delta", "num"), row.names = c(NA, -537L), class = "data.frame")
> data <- data.frame(read.csv("~/Downloads/sas_reporting_hist.csv"))
> dput(data)
structure(list(stress_score_delta = c(1L, 1L, 0L, -3L, 0L, 0L,
0L, -2L, 0L, -5L, -3L, -3L, -4L, 0L, -1L, 0L, 0L, -3L, -4L, 1L,
-3L, -4L, -5L, -1L, -2L, -3L, -1L, -2L, -3L, -10L, -5L, 1L, -2L,
-1L, -2L, -2L, 0L, -3L, -3L, 0L, -1L, -1L, 2L, -2L, -3L, -1L,
0L, 0L, -2L, -13L, 1L, -1L, -1L, -3L, -1L, 4L, 2L, 0L, -2L, 0L,
-4L, 2L, -1L, -2L, -3L, -2L, -4L, 1L, 0L, 2L, 2L, 0L, 2L, 2L,
0L, 1L, 3L, -2L, 3L, 2L, 0L, 1L, -2L, 2L, -2L, -2L, 0L, 0L, 1L,
-1L, -2L, -1L, 2L, 0L, -2L, 0L, -4L, -6L, -1L, -1L, -2L, -1L,
-3L, -1L, -2L, 0L, -1L, 0L, -1L, -4L, -4L, 0L, -5L, -3L, -4L,
-1L, -1L, 2L, 1L, -9L, -5L, NA, -5L, -4L, -6L, -2L, -7L, -3L,
-2L, -5L, -1L, -4L, -3L, 1L, -6L, -8L, -3L, 0L, 3L, -1L, -3L,
-3L, -3L, -4L, -5L, -4L, -2L, 1L, -3L, -1L, 0L, -6L, -1L, -11L,
-11L, -7L, 2L, 0L, -2L, 0L, -2L, 5L, -4L, 0L, -1L, 2L, 0L, -1L,
-2L, -7L, -2L, -2L, 0L, 4L, -5L, 0L, -5L, -3L, -2L, -2L, -2L,
-6L, -1L, 0L, -1L, -2L, -1L, -2L, -2L, -1L, -5L, 1L, 2L, -1L,
2L, -1L, 3L, -1L, -2L, -2L, 0L, 0L, -3L, -2L, -1L, -1L, -2L,
0L, -3L, -1L, -5L, -1L, -2L, -1L, -5L, -2L, 0L, 0L, -1L, -1L,
-1L, 2L, -1L, -4L, -2L, -4L, -2L, -1L, -7L, -3L, 0L, -1L, -3L,
-1L, -2L, -1L, -1L, 0L, -5L, -1L, -4L, -12L, -3L, -2L, 0L, -2L,
-4L, 0L, -4L, -2L, -2L, -1L, 0L, -5L, 0L, -3L, -3L, 0L, -1L,
0L, 2L, 1L, -6L, 1L, -2L, -1L, -3L, -4L, -2L, -3L, -1L, -1L,
0L, -4L, -2L, 0L, -1L, -6L, -1L, -2L, -1L, -4L, 2L, -1L, -2L,
-1L, -4L, -2L, -2L, -3L, -4L, -2L, -4L, -3L, -2L, -3L, 0L, -4L,
0L, -10L, -3L, -5L, -2L, -2L, -2L, -6L, -2L, -4L, 2L, 3L, 0L,
0L, 4L, -1L, -1L, -3L, -1L, 2L, -1L, -3L, -3L, -3L, -5L, -7L,
-5L, -4L, -2L, -3L, 4L, -2L, 1L, 0L, -1L, -1L, -2L, 1L, -10L,
0L, -5L, -2L, 0L, -3L, -5L, 4L, -1L, 1L, 0L, -1L, 1L, -2L, 3L,
-1L, -1L, -3L, -5L, -2L, -3L, 2L, -4L, -1L, -1L, 0L, 0L, -3L,
0L, -2L, -2L, -6L, -5L, 0L, 1L, -1L, 0L, 0L, -1L, 2L, -1L, -1L,
0L, -2L, -2L, -5L, -1L, 0L, -1L, -4L, -4L, -3L, -7L, -3L, -1L,
-1L, -2L, -2L, 0L, 1L, 2L, -1L, -2L, NA, NA, 0L, 1L, NA, 1L,
-1L, 1L, -3L, -1L, 1L, -4L, -2L, 2L, -5L, -1L, -1L, 0L, -2L,
-2L, 2L, -2L, -1L, -1L, -1L, 1L, -3L, 0L, -1L, -1L, -2L, 1L,
-2L, -1L, -1L, -2L, -1L, -1L, -3L, -11L, -2L, -1L, -1L, -3L,
0L, -1L, 0L, 1L, 4L, 0L, -1L, -1L, -4L, -1L, -3L, -2L, -1L, -2L,
0L, -4L, 0L, -5L, -1L, -2L, -3L, -1L, -5L, 0L, 0L, 0L, -1L, -2L,
0L, 0L, 1L, 2L, -2L, 1L, 0L, 1L, 0L, 1L, 0L, -2L, -5L, -3L, -1L,
-1L, -1L, -2L, 0L, -1L, -2L, 0L, -1L, 1L, -5L, -3L, -3L, 0L,
-7L, -1L, 2L, 1L, -1L, -3L, -3L, 0L, 0L, -1L, -4L, -1L, 0L, -1L,
-4L, 0L, -10L, 0L, 0L, 1L, -3L, -1L, -2L, -8L, -2L, 0L, -3L,
-1L, 0L, 0L, -2L, -5L, -4L, -1L, -2L, -2L, -1L, -1L), isch_score_delta = c(0L,
0L, 0L, -1L, 0L, 0L, 1L, 1L, 3L, 0L, 1L, 1L, 0L, 0L, 2L, 0L,
1L, -2L, 1L, -1L, -1L, 2L, 0L, 0L, 0L, 0L, -1L, -2L, -2L, -2L,
-4L, 0L, -2L, -2L, -1L, 3L, 0L, -2L, -1L, -1L, 2L, 0L, 1L, -3L,
0L, 0L, 3L, -1L, -2L, 0L, 0L, -1L, 0L, -4L, 1L, -3L, 2L, 2L,
0L, 0L, -3L, 1L, 0L, 0L, -1L, -2L, -5L, 0L, -1L, 0L, -1L, 0L,
3L, 2L, -1L, 0L, 1L, 1L, 3L, 3L, -1L, -1L, 0L, 3L, 8L, 0L, 1L,
2L, 4L, 0L, -2L, 1L, 0L, 2L, -1L, 0L, 2L, -2L, 0L, -1L, 2L, 0L,
-2L, -2L, 3L, 0L, 3L, 2L, -2L, -2L, -2L, 3L, 2L, 0L, 0L, -1L,
1L, 4L, 1L, -4L, -2L, NA, -1L, -3L, -2L, -2L, -3L, 0L, 1L, -3L,
0L, -4L, 0L, 1L, -2L, 0L, -1L, 1L, 0L, 3L, -3L, -2L, -2L, -1L,
-1L, -4L, -1L, 1L, -2L, -2L, 1L, -1L, -1L, -4L, -5L, -9L, -2L,
3L, -2L, 1L, 0L, 7L, 0L, 1L, 0L, 3L, 2L, 1L, -3L, 0L, -1L, -2L,
2L, 6L, 1L, 1L, -1L, -1L, -1L, 0L, 0L, -3L, -2L, 1L, 0L, 0L,
1L, 0L, -1L, 0L, -4L, 0L, 0L, 0L, 1L, -1L, -3L, 1L, -5L, 0L,
0L, 0L, -1L, 2L, 0L, 0L, 0L, 2L, 0L, 3L, 0L, 0L, -1L, 0L, -1L,
0L, 0L, 1L, 0L, 0L, -1L, 2L, 0L, 0L, 1L, -1L, 0L, 2L, -3L, -1L,
1L, 0L, -1L, 0L, 0L, -1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, -1L, 0L,
-2L, 2L, 2L, 0L, -2L, 1L, 1L, -1L, -2L, 0L, -1L, -3L, 0L, 1L,
-1L, 2L, -1L, -7L, 0L, 1L, 1L, -1L, 0L, 0L, 1L, 0L, 1L, -1L,
-2L, 0L, 0L, 2L, 0L, 1L, -6L, -1L, 0L, 5L, 0L, -5L, 0L, 2L, 0L,
-1L, 3L, -2L, -1L, -4L, -2L, -2L, -1L, 1L, -1L, 2L, -3L, -4L,
-2L, -2L, -2L, -2L, -6L, 0L, 1L, 0L, 0L, 0L, 2L, 5L, 2L, 0L,
0L, 1L, 5L, 0L, -2L, 3L, -1L, -1L, 0L, 0L, 0L, -1L, 0L, 2L, 2L,
2L, 1L, -1L, 0L, -1L, 2L, -6L, 0L, -1L, -3L, -1L, 0L, -3L, 2L,
0L, 0L, 0L, 0L, -4L, 0L, 2L, -1L, 2L, -2L, -2L, 1L, -1L, 2L,
-2L, 0L, -2L, 2L, 2L, 1L, 0L, 1L, -2L, -1L, 1L, 2L, 0L, 0L, 0L,
4L, -1L, 2L, 0L, -2L, 0L, 0L, -1L, -3L, 1L, -1L, 1L, 0L, 2L,
0L, 2L, -1L, 3L, 0L, 0L, -3L, -1L, 4L, 1L, -2L, 0L, NA, NA, 1L,
0L, NA, 2L, 2L, -1L, 1L, 2L, 0L, -5L, -3L, 1L, -1L, 0L, 0L, -1L,
0L, -2L, 2L, 1L, -1L, -1L, -1L, -1L, -2L, 0L, 1L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, -1L, -1L, -1L, 0L, -2L, 3L, 1L, 0L, 0L, -2L,
0L, 2L, 1L, 2L, -1L, -1L, -1L, 1L, -1L, -2L, -1L, 0L, 0L, -1L,
-1L, -2L, -1L, -1L, 1L, 0L, -2L, 0L, 0L, 1L, 0L, 0L, 2L, -1L,
1L, 2L, 1L, 0L, 1L, 2L, 0L, 1L, 1L, 0L, -1L, -1L, 1L, 2L, 0L,
0L, 1L, 0L, 0L, 1L, -1L, 1L, -2L, 0L, -1L, 0L, -4L, 1L, 3L, 1L,
-2L, -2L, 0L, 0L, 1L, -2L, -4L, -1L, 2L, -1L, -2L, 0L, 0L, 1L,
3L, 2L, -2L, 1L, 0L, -3L, -1L, 0L, 0L, -1L, 1L, 1L, -1L, -2L,
2L, 1L, 0L, -1L, 0L, -1L)), .Names = c("stress_score_delta",
"isch_score_delta"), row.names = c(NA, -537L), class = "data.frame")