9

我想合并特定列(key1,key2)上的两个数据框并总结另一列(值)的值。

>>> df1 = pd.DataFrame({'key1': range(4), 'key2': range(4), 'value': range(4)})
   key1  key2  value
0     0     0      0
1     1     1      1
2     2     2      2
3     3     3      3

>>> df2 = pd.DataFrame({'key1': range(2, 6), 'key2': range(2, 6), 'noise': range(2, 6), 'value': range(10, 14)})
   key1  key2  noise  value
0     2     2      2     10
1     3     3      3     11
2     4     4      4     12
3     5     5      5     13

我想要这个结果:

   key1  key2  value
0     0     0      0
1     1     1      1
2     2     2     12
3     3     3     14
4     4     4     12
5     5     5     13

用 SQL 术语来说,我想要:

SELECT df1.key1, df1.key2, df1.value + df2.value AS value
FROM df1 OUTER JOIN df2 ON key1, key2

我尝试了两种方法:

方法1

concatenated = pd.concat([df1, df2])
grouped = concatenated.groupby(['key1', 'key2'], as_index=False)
summed = grouped.agg(np.sum)
result = summed[['key1', 'key2', 'value']]

方法2

joined = pd.merge(df1, df2, how='outer', on=['key1', 'key2'], suffixes=['_1', '_2'])
joined = joined.fillna(0.0)
joined['value'] = joined['value_1'] + joined['value_2']
result = joined[['key1', 'key2', 'value']]

两种方法都给出了我想要的结果,但我想知道是否有更简单的方法。

4

1 回答 1

12

我不知道更简单,但你可以更简洁一点:

>>> pd.concat([df1, df2]).groupby(["key1", "key2"], as_index=False)["value"].sum()
   key1  key2  value
0     0     0      0
1     1     1      1
2     2     2     12
3     3     3     14
4     4     4     12
5     5     5     13

但是,根据您对链接操作的容忍度,您可能希望将其分成多行(四行往往接近我的上限,在这种情况下是 concat-groupby-select-sum)。

于 2013-05-16T09:39:43.853 回答