2

我想知道是否有可能在 numpy 的这部分代码中以某种方式优化 dotproduts 和数组转换,根据分析器,这占用了我代码运行时间的 95%。(我不想使用 f2py、cython 或 pyOpenCl,我只是在学习如何有效地使用 numpy)

def evalSeriesInBasi(a,B):
    Y   = dot(a,B[0])
    dY  = dot(a,B[1])
    ddY = dot(a,B[2]) 
    return array([Y,dY,ddY])

def evalPolarForces( R, O ):
    # numexpr doest seem to help it takes 3,644 vs. 1.910 with pure numpy
    G    = 1.0 / (R[0]**2)                     # Gravitational force
    F_O  = R[0] * O[2]     + 2 * R[1] * O[1]   # Angular Kinematic Force = Angular engine thrust 
    F_R  = R[0] * O[1]**2  +     R[2]          
    FTR  = F_R - G                             
    FT2  = F_O**2 + FTR**2                     # Square of Total engine Trust Force ( corespons to propelant consuption for power limited variable specific impulse engine)
    return array([F_O,F_R,G,FTR, FT2]) 

def evalTrajectoryPolar( Rt0, Ot0, Bs, Rc, Oc ):
    Rt = Rt0 +  evalSeriesInBasi(Rc,Bs)
    Ot = Ot0 +  evalSeriesInBasi(Oc,Bs)
    Ft = evalPolarForces( Rt, Ot )
    return Ot, Rt, Ft

其中“B”是存储基函数的形状数组 (3,32,128),“a”是这些基函数的系数,所有其他数组,如 Y、dY、ddY、F_O、F_R、G、FTR、FT2 是值128个采样点的一些函数

根据分析器,最长时间需要 numpy.core.multiarray.array 和 numpy.core._dotblas.dot

 ncalls  tottime  percall  cumtime  percall filename:lineno(function)
22970    2.969    0.000    2.969    0.000 {numpy.core.multiarray.array}
46573    0.926    0.000    0.926    0.000 {numpy.core._dotblas.dot}
 7656    0.714    0.000    2.027    0.000 basiset.py:61(evalPolarForces)
 7656    0.224    0.000    0.273    0.000 OrbitalOptCos_numpyOpt.py:43(fitnesFunc)
 7656    0.192    0.000    4.868    0.001 basiset.py:54(evalTrajectoryPolar)
  116    0.141    0.001    5.352    0.046 optimize.py:536(approx_fprime)
 7656    0.132    0.000    5.273    0.001 OrbitalOptCos_numpyOpt.py:63(evalFitness)
15312    0.101    0.000    2.649    0.000 basiset.py:28(evalSeriesInBasi) 
4

2 回答 2

2

您可以通过删除调用来加速计算array(),这是一个示例:

import numpy as np

B = np.random.rand(3, 32, 128)
a = np.random.rand(32, 32)

def f1(a, B):
    Y   = dot(a,B[0])
    dY  = dot(a,B[1])
    ddY = dot(a,B[2]) 
    return array([Y,dY,ddY])

def f2(a, B):
    result = np.empty((B.shape[0], a.shape[0], B.shape[-1]))
    for i in xrange(B.shape[0]):
        np.dot(a, B[i], result[i])
    return result

r1 = f1(a, B)
r2 = f2(a, B)
print np.allclose(r1, r2)

f1()和的结果f2()相同,但速度不同:

%timeit f1(a, B)
%timeit f2(a, B)

结果是:

1000 loops, best of 3: 1.34 ms per loop
10000 loops, best of 3: 135 µs per loop
于 2013-05-12T00:04:21.923 回答
0

怎么样:

def f3(a, B):
    r = np.dot(a, B)
    return np.rollaxis(r, 1)
于 2013-05-12T03:19:54.900 回答