我找到并复制了此代码以从查找峰的全宽半最大值(第二个到最后一个答案)中获取 FWHM。我下面的代码使用我自己的数据。生成的图看起来不对,因为我的数据出现在一侧,而绿色框在另一侧。必须进行哪些更改才能在我的数据上看到高斯分布?
import numpy as np, scipy.optimize as opt
from pylab import *
def gauss(x, p):
return 1.0/(p[1]*np.sqrt(2*np.pi))*np.exp(-(x-p[0])**2/(2*p[1]**2))
x = [6711.19873047, 6712.74267578, 6714.28710938, 6715.83544922, \
6717.38037109, 6718.92919922, 6720.47509766, 6722.02490234, \
6723.57128906, 6725.11767578, 6726.66845703, 6728.21630859, \
6729.76757812, 6731.31591797, 6732.86816406, 6734.41699219, \
6735.96630859, 6737.51953125, 6739.06933594, 6740.62353516, \
6742.17431641, 6743.72900391]
y = [20.86093712, 23.60984612, 23.079916, 18.17703056, 18.24843597, \
16.70049095, 19.48906136, 16.7509613, 19.09896088, 32.03007889, \
54.56513977, 58.76417542, 40.93075562, 24.77710915, 17.68757629, \
17.60736847, 18.89552498, 17.84486008, 17.49455452, 18.29696465, \
18.55847931, 19.26465797]
# Fit a guassian
p0 = [0,70]
errfunc = lambda p, x, y: gauss(x, p) - y # Distance to the target function
p1, success = opt.leastsq(errfunc, p0[:], args=(x, y))
fit_mu, fit_stdev = p1
FWHM = 2*np.sqrt(2*np.log(2))*fit_stdev
print "FWHM", FWHM
plot(x,y)
plot(x, gauss(x,p1),lw=3,alpha=.5, color='r')
axvspan(fit_mu-FWHM/2, fit_mu+FWHM/2, facecolor='g', alpha=0.5)
show()