3

我在我的 s3c2440 板上启用了 MMU(3G - 4G 内存 :: 故障属性),当我没有读/写 3G - 4G 内存时一切都很好。所以为了测试页面错误向量,我写了一个 0xFF 到3G地址,正如我所料,我从FSR得到了正确的值,所以我在_do_page_fault()中做了这个,步骤是这样的:

.....                 // set new page to translation table 
.....
invlidate_icache ();  // clear icache 
clr_dcache ();        // wb is used ,clear dcache 
invalidate_ttb ();    // invalidate translation table 

然后ISR_dataabort返回,我读取3G地址得到我之前写的0xFF。不幸的是,我再次中止了数据。(我确定我设置的转换表值没问题)

那么更新MMU转换表的正确方法是什么。感谢您的帮助!谢谢

这是我使用的主要代码(仅用于一些测试), (我对 ARM ARCH 有点陌生,所以这段代码可能很紧急)

/* MMU TTB 0 BASE ATTR */
#define TTB0_FAULT          (0|(1<<4))          /* TTB FAULT */
#define TTB0_COARSE         (1|(1<<4))          /* COARSE PAGE BASE ADDR */
#define TTB0_SEG            (2|(1<<4))          /* SEG BASE ADDR */
#define TTB0_FINE           (3|(1<<4))          /* FINE PAGE BASE ADDR */

/* MMU TTB 1 BASE ATTR */ 
#define TTB1_FAULT          (0)
#define TTB1_LPG            (1)                 /* Large page */
#define TTB1_SPG            (2)                 /* small page */
#define TTB1_TPG            (3)                 /* tiny page */

/* domain access priority level */
#define FAULT_PL            (0x0)               /* domain fault */
#define USR_PL              (0x1)               /* usr mode */
#define RSV_PL              (0x2)               /* reserved */
#define SYS_PL              (0x3)               /* sys mode */

#define DOMAIN_FAULT        (0x0<<5)            /* fault 0*/
#define DOMAIN_SYS          (0x1<<5)            /* sys 1*/
#define DOMAIN_USR          (0x2<<5)            /* usr 2*/

/* C,B bit */
#define CB                  (3<<2)              /* cache_on, write_back */
#define CNB                 (2<<2)              /* cache_on, write_through */ 
#define NCB                 (1<<2)              /* cache_off,WR_BUF on */
#define NCNB                (0<<2)              /* cache_off,WR_BUF off */

/* ap 2 bits */
#define AP_FAULT            (0<<10)             /* access deny */
#define AP_SU_ONLY          (1<<10)             /* rw su only */
#define AP_USR_RO           (2<<10)             /* sup=RW, user=RO */
#define AP_RW               (3<<10)             /* su=RW, user=RW */

/* page dir 1 ap0 */
#define AP0_SU_ONLY         (1<<4)             /* rw su only */
#define AP0_USR_RO          (2<<4)             /* sup=RW, user=RO */
#define AP0_RW              (3<<4)             /* su=RW, user=RW */

/* page dir 1 ap1 */
#define AP1_SU_ONLY         (1<<6)             /* rw su only */
#define AP1_USR_RO          (2<<6)             /* sup=RW, user=RO */
#define AP1_RW              (3<<6)             /* su=RW, user=RW */


/* page dir 1 ap2 */
#define AP2_SU_ONLY         (1<<8)             /* rw su only */
#define AP2_USR_RO          (2<<8)             /* sup=RW, user=RO */
#define AP2_RW              (3<<8)             /* su=RW, user=RW */

/* page dir 1 ap3 */
#define AP3_SU_ONLY         (1<<10)             /* rw su only */
#define AP3_USR_RO          (2<<10)             /* sup=RW, user=RO */
#define AP3_RW              (3<<10)             /* su=RW, user=RW */


#define RAM_START           (0x30000000)
#define KERNEL_ENTRY        (0x30300000)        /* BANK 6 (3M) */
#define KERNEL_STACK        (0x3001A000)        /* BANK 6 (16K + 64K + 16K + 8K) (8k kernel stack) */
#define IRQ_STACK           (0x3001B000)        /* 4K IRQ STACK */
#define KERNEL_IMG_SIZE     (0x20000)            

#define IRQ_STACK           (0x3001B000)

/* 16K aignment */
#define TTB_BASE            (0x30000000)        
#define PAGE_DIR0           (TTB_BASE)
#define TTB_FULL_SIZE       (0x4000)        
#define PAGE_DIR1           (TTB_BASE+TTB_FULL_SIZE)                 

#define PAGE_DIR0_SIZE      (0x4000)            /* 16k */


    void _do_page_fault (void)
    {
        //
        ...........
        // 
        // read the FSR && get the vaddr && type here 
    volatile unsigned *page_dir = (volatile unsigned*)(TTB_BASE);  
    unsigned index = vaddr >> 20,i = 0, j = 0;
    unsigned page = 0;

        if (!(page_dir[index] & ~(0x3FF) && (type == 0x0B))) {          /* page_dir empty */
            i = index & ~0x03;                                          
            if ( (page_dir[i+0] & ~(0x3FF)) || (page_dir [i+1] & ~(0x3FF))         
              || (page_dir[i+2] & ~(0x3FF)) || (page_dir [i+3] & ~(0x3FF)) )
            {
                panic ( "page dir is bad !\n" );                        /* 4 continuous page_dir must be 0 */
            }

            if (!(page = find_free_page ())) 
                panic ( "no more free page !\n" );                      /* alloc a page page dir*/

            page_dir[i+0] = (page + 0x000) | DOMAIN_USR | TTB0_COARSE ; /* small page 1st 1KB */
            page_dir[i+1] = (page + 0x400) | DOMAIN_USR | TTB0_COARSE ; /* small page 2nd 1KB */
            page_dir[i+2] = (page + 0x800) | DOMAIN_USR | TTB0_COARSE ; /* small page 3rd 1KB */
            page_dir[i+3] = (page + 0xC00) | DOMAIN_USR | TTB0_COARSE ; /* small page 4th 1KB */

            if (!(page = find_free_page ())) 
                panic ( "no more free page !\n" );                      /* alloc a page page table*/

            volatile unsigned *page_tbl = (volatile unsigned*) (page_dir[index] & ~(0x3FF));

            *page_tbl = page|AP0_RW|AP1_RW|AP2_RW|AP3_RW| NCNB|TTB1_SPG;/* small page is used */


            invalidate_icache ();

            for (i = 0; i < 64; i++)
            {
                for (j = 0;j < 8;j ++)
                    clr_invalidate_dcache ( (i<<26)|(j<<5) );
            }


            invalidate_tlb ();
        }
        ........
        //

    }

    /* here is the macros */

    #define invalidate_tlb()    \
    {\
         __asm__  __volatile__ (\
            "mov    r0,#0\n"\
            "mcr    p15,0,r0,c8,c7,0\n"\
            :::"r0" \
        );\
    }

    #define clr_invalidate_dcache(index)    \
    {\
        __asm__  __volatile__ (\
            "mcr    p15,0,%[i],c7,c14,2\n"\
            :: [i]"r"(index)\
        );\
    }


    #define invalidate_icache() \
    {\
        __asm__  __volatile__ (\
            "mov    r0,#0\n"\
            "mcr    p15,0,r0,c7,c5,0\n"\
            ::: "r0"\
        );\
    }

    #define invalidate_dcache() \
    {\
        __asm__  __volatile__ (\
            "mov    r0,#0\n"\
            "mcr    p15,0,r0,c7,c6,0\n"\
            ::: "r0"\
        );\
    }



    #define invalidate_idcache()    \
    {\
        __asm__  __volatile__ (\
            "mov    r0,#0\n"\
            "mcr    p15,0,r0,c7,c7,0\n"\
            :::"r0"\
        );\
    }\
4

1 回答 1

4

注意:我假设TTB_BASE是主 ARM L1页表。如果它是一些阴影,您需要根据unixsmurf显示更多代码。这是我最好的猜测......

page_dir既是主要的L1条目,又是L2精细页表。TTB_BASE应该只包含节、超节或指向子页表的指针。您需要为L2页表分配更多的物理内存。

我猜您的page_dir[i+0],page_dir[i+1]等正在覆盖其他L1部分条目,而invalidate_tlb()将其具体到 CPU。您应该使用L2 page_tbl指针来设置/索引小/细页面。也许您的内核代码位于3G-4G空间中,并且您正在那里重写一些关键的L1映射;任何数量的奇怪的事情都可能发生。目前的用途page_tbl尚不清楚。

您不能重复使用L1表,因为它们对硬件有意义。我想这只是一个错误?

主L1页表中只有三种类型的条目,

  1. 部分 - 一个 1MB 内存直接映射 virt 到 phy,没有第二个页表。
  2. Super-sections - 每个部分的 4MB 内存映射,但最小化 TLB 压力。
  3. 第 2表。条目可以是 1k、4k 和 64k。 精细页表的表大小为 4k,并且不在现代 ARM 设计中。每个条目是精细页表中的 1k 地址。

主页表必须位于16k 对齐的物理地址上,这也是它的大小。16k/(4bytes/entry)*1MB给出L1表的4GB地址范围。所以主L1页表中的每个条目总是引用一个1MB的条目。 粗略页表是较新 ARM 上的唯一选项,它们指的是 1K L2表。

1K_L2_size * 4K_entry / (4bytes_per_entry) gives 1MB address space.
1K_L2_size * 64K_entry / (16bytes_per_entry) gives 1MB address space.

在主L1中有四个1MB的条目,用于一个超级节。L2表中每个 64k大页面有四个条目。如果您使用的是super-sections,则没有L2条目。

我认为您可能混淆了超级部分大页面?对于某些格式不正确的页表只会在TLB invalidate上显现,因此 MMU 映射通过遍历从表中重新获取。

最后,您应该刷新D 缓存排空写入缓冲区以确保与内存的一致性。您可能还希望有一个内存屏障

static inline void dcache_clean(void)
{
    const int zero = 0;
    asm volatile ("" ::: "memory"); /* barrier */
    /* clean entire D cache -> push to external memory. */
    asm volatile ("1: mrc p15, 0, r15, c7, c10, 3\n"
                    " bne 1b\n" ::: "cc");
    /* drain the write buffer */
    asm volatile ("mcr 15, 0, %0, c7, c10, 4"::"r" (zero));
}

也有协处理器命令使单个 TLB 条目无效,因为您只更改数据故障中的vaddr/paddr映射的一部分。

另请参阅:ARM MMU 教程虚拟内存结构和您的ARM 架构参考手册

于 2013-05-05T14:41:00.810 回答