另一种实现这一点而不是填充数据框df
的方法是将多索引添加到原始数组(df_a
和df_b
),然后将它们连接起来(见下文)。
df
没有被填充的原因是因为 pandas 基于索引进行数据对齐。并且在分配df.ix["a"]
另一个数据框时,它会填充索引匹配的值。为了说明这一点:
>>> df = pd.DataFrame(randn(3, 2), columns=["x", "y"], index=range(3))
>>> df2 = pd.DataFrame(zeros((1, 2)), columns=["x", "y"], index=range(2,3))
>>> df
x y
0 -0.995116 0.132438
1 -0.023010 -0.211612
2 -0.053206 0.427369
>>> df2
x y
2 0 0
>>> df.ix[:] = df2
>>> df
x y
0 NaN NaN
1 NaN NaN
2 0 0
当分配一个 numpy 数组(或一个列表,..)时,没有要匹配的索引,所以它只是填充数据帧(在这种情况下也是广播):
>>> df.ix[:] = df2.values
>>> df
x y
0 0 0
1 0 0
2 0 0
因此,在您的情况下,当您尝试分配df_a
todf.ix['a']
时,索引不匹配(MultiIndex 与普通索引),并且没有分配任何内容(或更准确地说:用 NaN 填充)。但是,当您第一次转换df_a
为也具有相同的 MultiIndex 时,它确实有效:
>>> df_a = pd.DataFrame(randn(3, 2), columns=["x", "y"], index=range(3))
>>> df_b = pd.DataFrame(randn(3, 2), columns=["x", "y"], index=range(3))
>>>
>>> tuples = list(itertools.product(["a", "b"], range(3)))
>>> df = pd.DataFrame(columns=["x", "y"], index=pd.MultiIndex.from_tuples(tuples))
>>>
>>> df_a.index = pd.MultiIndex.from_tuples([tuple(('a', i)) for i in df_a.index])
>>>
>>> df.ix["a"] = df_a
>>> df
x y
a 0 1.533881 1.276075
1 -0.5143746 -0.3400633
2 -1.071509 1.831282
b 0 NaN NaN
1 NaN NaN
2 NaN NaN
或者如上所述,当使用 numpy 数组(该.values
属性将数据作为 numpy 数组返回)时,它也可以工作:
>>> df.ix["b"] = df_b.values
>>> df
x y
a 0 1.533881 1.276075
1 -0.5143746 -0.3400633
2 -1.071509 1.831282
b 0 0.06535034 -0.6276186
1 0.008100781 0.9512881
2 0.08688541 -0.7101486
但我认为,实现这一点而不是填充数据框的另一种方法df
是将多索引添加到原始数组中,然后将它们连接起来:
要将其转换为 MultiIndex,您可以这样做:
>>> df_a['df'] = 'a'
>>> df_b['df'] = 'b'
>>>
>>> df_a = df_a.set_index('df', append=True)
>>> df_b = df_b.set_index('df', append=True)
或像这样:
>>> df_a.index = pd.MultiIndex.from_tuples([tuple(('a', i)) for i in df_a.index])
>>> df_b.index = pd.MultiIndex.from_tuples([tuple(('b', i)) for i in df_b.index])
然后你可以连接它们:
>>> df = pd.concat([df_a, df_b])
>>> df
x y
df
0 a -0.225156 -0.846229
1 a 1.566139 0.892763
2 a -1.291920 -0.517408
0 b 1.464853 0.792709
1 b -1.307375 -0.360373
2 b 0.467406 1.249325
>>>
>>> df.swaplevel(0,1)
x y
df
a 0 -0.225156 -0.846229
1 1.566139 0.892763
2 -1.291920 -0.517408
b 0 1.464853 0.792709
1 -1.307375 -0.360373
2 0.467406 1.249325