8

我想将 SurfFeatureDetector 限制为一组区域(掩码)。对于测试,我只定义了一个掩码:

Mat srcImage; //RGB source image
Mat mask = Mat::zeros(srcImage.size(), srcImage.type());
Mat roi(mask, cv::Rect(10,10,100,100));
roi = Scalar(255, 255, 255);
SurfFeatureDetector detector();
std::vector<KeyPoint> keypoints;
detector.detect(srcImage, keypoints, roi); // crash
//detector.detect(srcImage, keypoints); // does not crash

当我将“roi”作为掩码传递时,我收到此错误:

OpenCV Error: Assertion failed (mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size())) in detect, file /Users/ux/Downloads/OpenCV-iOS/OpenCV-iOS/../opencv-svn/modules/features2d/src/detectors.cpp, line 63

这有什么问题?如何正确地将掩码传递给 SurfFeatureDetector 的“检测”方法?

问候,

4

3 回答 3

18

关于面具的两件事。

  • 掩码应该是 8 位无符号字符的 1 通道矩阵,转换为 opencv 类型CV_8U。在您的情况下,掩码的类型为 srcImage.type(),它是一个 3 通道矩阵
  • 您正在通过roi检测器,但您应该通过mask。当你在改变时roi,你也在改变mask

以下应该工作

Mat srcImage; //RGB source image
Mat mask = Mat::zeros(srcImage.size(), CV_8U);  // type of mask is CV_8U
// roi is a sub-image of mask specified by cv::Rect object
Mat roi(mask, cv::Rect(10,10,100,100));
// we set elements in roi region of the mask to 255 
roi = Scalar(255);  
SurfFeatureDetector detector();
std::vector<KeyPoint> keypoints;
detector.detect(srcImage, keypoints, mask);     // passing `mask` as a parameter
于 2013-05-03T19:35:26.587 回答
2

我将您的 ROI 代码添加到我正在处理的一些现有代码上,以下更改对我有用

cv::Mat mask = cv::Mat::zeros(frame.size(), CV_8UC1);  //NOTE: using the type explicitly
cv::Mat roi(mask, cv::Rect(10,10,100,100));
roi = cv::Scalar(255, 255, 255);

//SURF feature detection
const int minHessian = 400;
cv::SurfFeatureDetector detector(minHessian);
std::vector<cv::KeyPoint> keypoints;
detector.detect(frame, keypoints, mask);              //NOTE: using mask here, NOT roi
cv::Mat img_keypoints; 
drawKeypoints(frame, keypoints, img_keypoints, cv::Scalar::all(-1), cv::DrawMatchesFlags::DEFAULT);
cv::imshow("input image + Keypoints", img_keypoints);
cv::waitKey(0);

如果没有更改类型和使用mask而不是roi作为掩码,我也会收到运行时错误。这是有道理的,因为检测方法需要一个掩码——它应该与原始图像大小相同,而 roi 不是(它是一个 100x100 的矩形)。要直观地看到这一点,请尝试显示蒙版和 roi

cv::imshow("Mask", mask);
cv::waitKey(0);

cv::imshow("ROI", roi);
cv::waitKey(0);

类型也必须匹配;掩码应该是单通道,而您的图像类型可能是类型 16,它映射到CV_8UC3三通道图像

于 2013-05-03T19:36:07.463 回答
0

如果您希望对不规则面膜应用相同的方法,那么:

Mat& obtainIregularROI(Mat& origImag, Point2f topLeft, Point2f topRight, Point2f botLeft, Point2f botRight){

        static Mat black(origImag.rows, origImag.cols, origImag.type(), cv::Scalar::all(0));
        Mat mask(origImag.rows, origImag.cols, CV_8UC1, cv::Scalar(0));
        vector< vector<Point> >  co_ordinates;
        co_ordinates.push_back(vector<Point>());
        co_ordinates[0].push_back(topLeft);
        co_ordinates[0].push_back(botLeft);
        co_ordinates[0].push_back(botRight);
        co_ordinates[0].push_back(topRight);
        drawContours( mask,co_ordinates,0, Scalar(255),CV_FILLED, 8 );

       // origImag.copyTo(black,mask);
        //BasicAlgo::getInstance()->writeImage(black);
        return mask;  // returning the mask only
    }

然后像往常一样,生成 SIFT/SURF/... 指针

// 为 SIFT 特征检测器创建智能指针。

Ptr<FeatureDetector> SIFT_FeatureDetector = FeatureDetector::create("SIFT");
vector<KeyPoint> SIFT_Keypoints;
vector<KeyPoint> SIFT_KeypointsRotated; 
Mat maskedImg = ImageDeformationOperations::getInstance()->obtainIregularROI( rotatedImg,rotTopLeft,rotTopRight,rotBotLeft,rotBotRight);
SIFT_FeatureDetector->detect(rotatedImg, SIFT_KeypointsRotated, maskedImg);
Mat outputSIFTKeyPt;
drawKeypoints(rotatedImg, SIFT_KeypointsRotated, outputSIFTKeyPt, keypointColor, DrawMatchesFlags::DEFAULT);
于 2017-12-24T15:04:14.687 回答