我正在研究很棒的 SSE 指令,并开始使用一些简单的代码来测量使用它们的函数与使用“标准”代码(即非 SSE)的相同函数之间的差异。我意识到,当我编译代码(使用 -O3 标志)时,使用 SSE 版本的函数实际上(非常轻微)“慢”于不使用 SSE 指令的程序版本。我的猜测是:
- 编译器在优化代码方面做得很好
- SSE 函数可以运行得更快,但是将浮点数加载到寄存器是有代价的,这抵消了使用 SSE 指令的好处。
- testSSE() 函数不够复杂,无法真正显示使用 SSE 的程序版本与不使用 SSE 的程序版本之间的差异。
谁能告诉我他/她对此有何看法?非常感谢 -
编辑:所以我更正了代码(见下面的 2 个代码清单)。即使使用更短的更正版本,SSE 版本给我 2''48 而非 SSE 版本给我 1''36,证实了这样一个事实,在这种情况下编译器比我做得更好!
编辑:带有错误的旧代码(请参阅下面的更正版本)
// compiled with c++ tmp.cpp -msse4 -o testSSE -O3
#include <iostream>
#include <cmath>
#include <stdio.h>
#include <pmmintrin.h>
inline void testSSE(float *node1, float *node2, float *node3, float *node4, float *result)
{
__m128 tmp0, tmp1, tmp2, tmp3;
__m128 l, r;
l = _mm_load_ps(node1); //_mm_store_ps(result, l); fprintf(stderr, "1 %f %f %f %f\n", result[0], result[1], result[2], result[3]);
r = _mm_load_ps(node1 + 4); //_mm_store_ps(result, r); fprintf(stderr, "2 %f %f %f %f\n", result[0], result[1], result[2], result[3]);
tmp0 = _mm_hadd_ps(l, r); //_mm_store_ps(result, tmp0); fprintf(stderr, "3 %f %f %f %f\n", result[0], result[1], result[2], result[3]);
l = _mm_load_ps(node2); //_mm_store_ps(result, l); fprintf(stderr, "4 %f %f %f %f\n", result[0], result[1], result[2], result[3]);
r = _mm_load_ps(node2 + 4); //_mm_store_ps(result, r); fprintf(stderr, "5 %f %f %f %f\n", result[0], result[1], result[2], result[3]);
tmp1 = _mm_hadd_ps(l, r); //_mm_store_ps(result, tmp0); fprintf(stderr, "6 %f %f %f %f\n", result[0], result[1], result[2], result[3]);
l = _mm_load_ps(node3);
r = _mm_load_ps(node3 + 4);
tmp2 = _mm_hadd_ps(l, r);
l = _mm_load_ps(node4); //_mm_store_ps(result, l); fprintf(stderr, "10 %f %f %f %f\n", result[0], result[1], result[2], result[3]);
r = _mm_load_ps(node4 + 4); //_mm_store_ps(result, r); fprintf(stderr, "11 %f %f %f %f\n", result[0], result[1], result[2], result[3]);
tmp3 = _mm_hadd_ps(l, r); //_mm_store_ps(result, tmp0); fprintf(stderr, "12 %f %f %f %f\n", result[0], result[1], result[2], result[3]);
l = _mm_hadd_ps(tmp0, tmp1);
r = _mm_hadd_ps(tmp2, tmp3);
__m128 pDest = _mm_hadd_ps(l, r);
_mm_store_ps(result, pDest); // fprintf(stderr, "FINAL %f %f %f %f\n", result[0], result[1], result[2], result[3]);
}
void test(float *node1, float *node2, float *node3, float *node4, float *result)
{
float tmp0[4], tmp1[4], tmp2[4], tmp3[4];
tmp0[0] = node1[0] + node1[1];
tmp0[1] = node1[2] + node1[3];
tmp0[2] = node1[4] + node1[5];
tmp0[3] = node1[6] + node1[7];
tmp1[0] = node2[0] + node2[1];
tmp1[1] = node2[2] + node2[3];
tmp1[2] = node2[4] + node2[5];
tmp1[3] = node2[6] + node2[7];
tmp2[0] = node3[0] + node3[1];
tmp2[1] = node3[2] + node3[3];
tmp2[2] = node3[4] + node3[5];
tmp2[3] = node3[6] + node3[7];
tmp3[0] = node4[0] + node4[1];
tmp3[1] = node4[2] + node4[3];
tmp3[2] = node4[4] + node4[5];
tmp3[3] = node4[6] + node4[7];
float l[4], r[4];
l[0] = tmp0[0] + tmp0[1];
l[1] = tmp0[2] + tmp0[3];
l[2] = tmp1[0] + tmp1[1];
l[3] = tmp1[2] + tmp1[3];
r[0] = tmp2[0] + tmp2[1];
r[1] = tmp2[2] + tmp2[3];
r[2] = tmp3[0] + tmp3[1];
r[3] = tmp3[2] + tmp3[3];
result[0] = l[0] + l[1];
result[1] = l[2] + l[3];
result[2] = r[0] + r[1];
result[3] = r[2] + r[3];
}
int main(int argc, char **argv)
{
int nnodes = 4;
double t = clock();
for (int k = 0; k < 10000000; ++k) {
float *data = new float [nnodes * 8];
for (int i = 0; i < nnodes * 8; ++i) { data[i] = (i / 8) + 1; /* fprintf(stderr, "data %02d %f\n", i, data[i]); */ }
float result[4];
int off = sizeof(float) * 8;
testSSE(data, data + 8, data + 16, data + 24, result);
delete [] data;
}
fprintf(stderr, "%02f (sec)\n", (clock() - t) / (float)CLOCKS_PER_SEC);
return 0;
}
编辑:新(更正)代码
#include <iostream>
#include <cmath>
#include <stdio.h>
#include <pmmintrin.h>
inline void testSSE(float *node1, float *node2, float *node3, float *node4, float *result)
{
__m128 tmp0, tmp1, tmp2, tmp3;
tmp0 = _mm_load_ps(node1);
tmp1 = _mm_load_ps(node2);
tmp2 = _mm_hadd_ps(tmp0, tmp1);
tmp0 = _mm_load_ps(node3);
tmp1 = _mm_load_ps(node4);
tmp3 = _mm_hadd_ps(tmp0, tmp1);
tmp0 = _mm_hadd_ps(tmp2, tmp3);
_mm_store_ps(result, tmp0);
}
void test(float *node1, float *node2, float *node3, float *node4, float *result)
{
float tmp0[4], tmp1[4], tmp2[4], tmp3[4];
tmp0[0] = node1[0] + node1[1];
tmp0[1] = node1[2] + node1[3];
tmp0[2] = node1[4] + node1[5];
tmp0[3] = node1[6] + node1[7];
tmp1[0] = node2[0] + node2[1];
tmp1[1] = node2[2] + node2[3];
tmp1[2] = node2[4] + node2[5];
tmp1[3] = node2[6] + node2[7];
tmp2[0] = node3[0] + node3[1];
tmp2[1] = node3[2] + node3[3];
tmp2[2] = node3[4] + node3[5];
tmp2[3] = node3[6] + node3[7];
tmp3[0] = node4[0] + node4[1];
tmp3[1] = node4[2] + node4[3];
tmp3[2] = node4[4] + node4[5];
tmp3[3] = node4[6] + node4[7];
float l[4], r[4];
l[0] = tmp0[0] + tmp0[1];
l[1] = tmp0[2] + tmp0[3];
l[2] = tmp1[0] + tmp1[1];
l[3] = tmp1[2] + tmp1[3];
r[0] = tmp2[0] + tmp2[1];
r[1] = tmp2[2] + tmp2[3];
r[2] = tmp3[0] + tmp3[1];
r[3] = tmp3[2] + tmp3[3];
result[0] = l[0] + l[1];
result[1] = l[2] + l[3];
result[2] = r[0] + r[1];
result[3] = r[2] + r[3];
}
int main(int argc, char **argv)
{
int nnodes = 4;
float *data = new float [nnodes * 8];
for (int i = 0; i < nnodes * 8; ++i) { data[i] = (i / 8) + 1; /* fprintf(stderr, "data %02d %f\n", i, data[i]); */ }
double t = clock();
for (int k = 0; k < 1e+9; ++k) {
float result[4];
int off = sizeof(float) * 8;
test(data, data + 8, data + 16, data + 24, result);
}
fprintf(stderr, "%02f (sec)\n", (clock() - t) / (float)CLOCKS_PER_SEC);
delete [] data;
return 0;
}