我正在尝试对我们的客户端代码进行基准测试。所以我决定编写一个多线程程序来对我的客户端代码进行基准测试。我正在尝试测量time (95 Percentile)
以下方法需要多少-
attributes = deClient.getDEAttributes(columnsList);
下面是我编写的多线程代码,用于对上述方法进行基准测试。我在两种情况下看到了很多变化-
1)首先,使用多线程代码20 threads
and running for 15 minutes
。我得到 95 个百分位37ms
。我正在使用-
ExecutorService service = Executors.newFixedThreadPool(20);
2)但是如果我正在运行相同的程序来15 minutes
使用-
ExecutorService service = Executors.newSingleThreadExecutor();
代替
ExecutorService service = Executors.newFixedThreadPool(20);
当7ms
我使用newFixedThreadPool(20)
.
谁能告诉我这种高性能问题的原因是什么 -
newSingleThreadExecutor vs newFixedThreadPool(20)
通过这两种方式,我正在运行我的程序15 minutes
。
下面是我的代码-
public static void main(String[] args) {
try {
// create thread pool with given size
//ExecutorService service = Executors.newFixedThreadPool(20);
ExecutorService service = Executors.newSingleThreadExecutor();
long startTime = System.currentTimeMillis();
long endTime = startTime + (15 * 60 * 1000);//Running for 15 minutes
for (int i = 0; i < threads; i++) {
service.submit(new ServiceTask(endTime, serviceList));
}
// wait for termination
service.shutdown();
service.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
} catch (InterruptedException e) {
} catch (Exception e) {
}
}
下面是实现 Runnable 接口的类-
class ServiceTask implements Runnable {
private static final Logger LOG = Logger.getLogger(ServiceTask.class.getName());
private static Random random = new SecureRandom();
public static volatile AtomicInteger countSize = new AtomicInteger();
private final long endTime;
private final LinkedHashMap<String, ServiceInfo> tableLists;
public static ConcurrentHashMap<Long, Long> selectHistogram = new ConcurrentHashMap<Long, Long>();
public ServiceTask(long endTime, LinkedHashMap<String, ServiceInfo> tableList) {
this.endTime = endTime;
this.tableLists = tableList;
}
@Override
public void run() {
try {
while (System.currentTimeMillis() <= endTime) {
double randomNumber = random.nextDouble() * 100.0;
ServiceInfo service = selectRandomService(randomNumber);
final String id = generateRandomId(random);
final List<String> columnsList = getColumns(service.getColumns());
List<DEAttribute<?>> attributes = null;
DEKey bk = new DEKey(service.getKeys(), id);
List<DEKey> list = new ArrayList<DEKey>();
list.add(bk);
Client deClient = new Client(list);
final long start = System.nanoTime();
attributes = deClient.getDEAttributes(columnsList);
final long end = System.nanoTime() - start;
final long key = end / 1000000L;
boolean done = false;
while(!done) {
Long oldValue = selectHistogram.putIfAbsent(key, 1L);
if(oldValue != null) {
done = selectHistogram.replace(key, oldValue, oldValue + 1);
} else {
done = true;
}
}
countSize.getAndAdd(attributes.size());
handleDEAttribute(attributes);
if (BEServiceLnP.sleepTime > 0L) {
Thread.sleep(BEServiceLnP.sleepTime);
}
}
} catch (Exception e) {
}
}
}
更新:-
这是我的处理器规格-我从 Linux 机器上运行我的程序,其中 2 个处理器定义为:
vendor_id : GenuineIntel
cpu family : 6
model : 45
model name : Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz
stepping : 7
cpu MHz : 2599.999
cache size : 20480 KB
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss syscall nx rdtscp lm constant_tsc arch_perfmon pebs bts rep_good xtopology tsc_reliable nonstop_tsc aperfmperf pni pclmulqdq ssse3 cx16 sse4_1 sse4_2 popcnt aes hypervisor lahf_lm arat pln pts
bogomips : 5199.99
clflush size : 64
cache_alignment : 64
address sizes : 40 bits physical, 48 bits virtual
power management: