嗨,我目前正在编写一个基本的 C++ 应用程序,使用 OpenCV 库从背景中分割图像的主题。应用程序读取图像文件并使用分水岭算法根据在边缘周围找到的数据和在图像中心找到的数据生成掩码。
(首先,我创建了一个整体值为 -1 的图像对象。然后我在一个值为 1 的空图像周围创建了一个边框。然后我在图像的中心大致创建了一个矩形,其值为2.边框和矩形没有接触。)
我尝试使用生成的掩码在原始图像和自动生成的掩码之间使用按位与从图像中删除数据。
我是用 C++ 编写的,如果有人能快速查看我的代码,我将不胜感激。我能找到的唯一类似的例子是使用 Python 的原生 OpenCV 绑定。
样本面具:http: //i.imgur.com/a0SUwy3.png
示例图片:http: //i.imgur.com/FQywu6P.png
// Usage: ./app input.jpg
#include "opencv2/opencv.hpp"
#include <string>
using namespace cv;
using namespace std;
class WatershedSegmenter{
private:
cv::Mat markers;
public:
void setMarkers(cv::Mat& markerImage)
{
markerImage.convertTo(markers, CV_32S);
}
cv::Mat process(cv::Mat &image)
{
cv::watershed(image, markers);
markers.convertTo(markers,CV_8U);
return markers;
}
};
int main(int argc, char* argv[])
{
cv::Mat image = cv::imread(argv[1]);
cv::Mat blank(image.size(),CV_8U,cv::Scalar(0xFF));
cv::Mat dest(image.size(),CV_8U,cv::Scalar(0xFF));
imshow("originalimage", image);
// Create markers image
cv::Mat markers(image.size(),CV_8U,cv::Scalar(-1));
//Rect(topleftcornerX, topleftcornerY, width, height);
//top rectangle
markers(Rect(0,0,image.cols, 5)) = Scalar::all(1);
//bottom rectangle
markers(Rect(0,image.cols-5,image.cols, 5)) = Scalar::all(1);
//left rectangle
markers(Rect(0,0,5,image.rows)) = Scalar::all(1);
//right rectangle
markers(Rect(image.cols-5,0,5,image.rows)) = Scalar::all(1);
//centre rectangle
markers(Rect(image.cols/2,image.rows/2,50, 50)) = Scalar::all(2);
//Create watershed segmentation object
WatershedSegmenter segmenter;
segmenter.setMarkers(markers);
cv::Mat result = segmenter.process(image);
result.convertTo(result,CV_8U);
bitwise_and(image, blank, dest, result);
imshow("final_result", dest);
cv::waitKey(0);
return 0;
}