7

我正在尝试使用 Java 6 对 JPEG 进行像素化,但运气不佳。它需要使用 Java——而不是像 Photoshop 这样的图像处理程序,而且它需要看起来像老派——像这样:

像素化图像

有谁能够帮助我?

4

6 回答 6

16

使用java.awt.image( javadoc ) 和javax.imageio( javadoc ) API,您可以轻松地遍历图像的像素并自己执行像素化。

示例代码如下。您将至少需要这些导入:javax.imageio.ImageIOjava.awt.image.BufferedImagejava.awt.image.Rasterjava.awt.image.WritableRasterjava.io.File.

例子:

// How big should the pixelations be?
final int PIX_SIZE = 10;

// Read the file as an Image
img = ImageIO.read(new File("image.jpg"));

// Get the raster data (array of pixels)
Raster src = img.getData();

// Create an identically-sized output raster
WritableRaster dest = src.createCompatibleWritableRaster();

// Loop through every PIX_SIZE pixels, in both x and y directions
for(int y = 0; y < src.getHeight(); y += PIX_SIZE) {
    for(int x = 0; x < src.getWidth(); x += PIX_SIZE) {

        // Copy the pixel
        double[] pixel = new double[3];
        pixel = src.getPixel(x, y, pixel);

        // "Paste" the pixel onto the surrounding PIX_SIZE by PIX_SIZE neighbors
        // Also make sure that our loop never goes outside the bounds of the image
        for(int yd = y; (yd < y + PIX_SIZE) && (yd < dest.getHeight()); yd++) {
            for(int xd = x; (xd < x + PIX_SIZE) && (xd < dest.getWidth()); xd++) {
                dest.setPixel(xd, yd, pixel);
            }
        }
    }
}

// Save the raster back to the Image
img.setData(dest);

// Write the new file
ImageIO.write(img, "jpg", new File("image-pixelated.jpg"));

编辑:我想我应该提到 -double[] pixel据我所知,这只是 RGB 颜色值。例如,当我转储一个像素时,它看起来像{204.0, 197.0, 189.0},浅棕褐色。

于 2013-04-03T03:18:33.467 回答
3

完成@bchociej 的回答

我在像素中使用由 定义的区域的主色PIX_SIZE。这不是一个完美的解决方案,但它更好一点。

这里有一个例子:

原来的:
在此处输入图像描述

旧算法:
在此处输入图像描述

新算法:
在此处输入图像描述

代码示例

import java.awt.*;
import java.awt.image.BufferedImage;
import java.util.*;
import java.util.List;

public final class ImageUtil {

    public static BufferedImage pixelate(BufferedImage imageToPixelate, int pixelSize) {
        BufferedImage pixelateImage = new BufferedImage(
            imageToPixelate.getWidth(),
            imageToPixelate.getHeight(),
            imageToPixelate.getType());

        for (int y = 0; y < imageToPixelate.getHeight(); y += pixelSize) {
            for (int x = 0; x < imageToPixelate.getWidth(); x += pixelSize) {
                BufferedImage croppedImage = getCroppedImage(imageToPixelate, x, y, pixelSize, pixelSize);
                Color dominantColor = getDominantColor(croppedImage);
                for (int yd = y; (yd < y + pixelSize) && (yd < pixelateImage.getHeight()); yd++) {
                    for (int xd = x; (xd < x + pixelSize) && (xd < pixelateImage.getWidth()); xd++) {
                        pixelateImage.setRGB(xd, yd, dominantColor.getRGB());
                    }
                }
            }
        }

        return pixelateImage;
    }

    public static BufferedImage getCroppedImage(BufferedImage image, int startx, int starty, int width, int height) {
        if (startx < 0) startx = 0;
        if (starty < 0) starty = 0;
        if (startx > image.getWidth()) startx = image.getWidth();
        if (starty > image.getHeight()) starty = image.getHeight();
        if (startx + width > image.getWidth()) width = image.getWidth() - startx;
        if (starty + height > image.getHeight()) height = image.getHeight() - starty;
        return image.getSubimage(startx, starty, width, height);
    }

    public static Color getDominantColor(BufferedImage image) {
        Map<Integer, Integer> colorCounter = new HashMap<>(100);
        for (int x = 0; x < image.getWidth(); x++) {
            for (int y = 0; y < image.getHeight(); y++) {
                int currentRGB = image.getRGB(x, y);
                int count = colorCounter.getOrDefault(currentRGB, 0);
                colorCounter.put(currentRGB, count + 1);
            }
        }
        return getDominantColor(colorCounter);
    }

    private static Color getDominantColor(Map<Integer, Integer> colorCounter) {
        int dominantRGB = colorCounter.entrySet().stream()
            .max((entry1, entry2) -> entry1.getValue() > entry2.getValue() ? 1 : -1)
            .get()
            .getKey();
        return new Color(dominantRGB);
    }
}

如何使用它

img = ImageIO.read(new File("image.jpg"));
BufferedImage imagePixelated = ImageUtil.pixelate(img, PIX_SIZE);
ImageIO.write(imagePixelated, "jpg", new File("image-pixelated.jpg"));
于 2015-12-04T16:14:41.547 回答
1

我手头没有代码,但是如果您可以将图像大小调整为原始大小的 1/4,然后将其重新采样回原始大小,它应该可以解决问题。大多数图像库都可以做到这一点。

于 2013-04-03T02:28:00.497 回答
1

我在 Thibaut Mottet 的回答中修改了dominantColor 函数,所以它不是最常见的颜色,而是返回该像素
原始的平均RGB:
在此处输入图像描述

之后: 它不是很优化,但你明白了。
在此处输入图像描述

public static Color getDominantColor(BufferedImage image) {
    int sumR = 0, sumB = 0, sumG = 0, int sum2 = 0;
    int color = 0;
    for (int x = 0; x < image.getWidth(); x++) {
        for (int y = 0; y < image.getHeight(); y++) {
            color = image.getRGB(x, y);
            Color c = new Color(color);
            sumR += c.getRed();
            sumB += c.getBlue();
            sumG += c.getGreen();
            sum2++;
        }
    }
    return new Color(sumR/sum2, sumG/sum2, sumB/sum2);
于 2020-07-30T18:35:53.117 回答
0

搜索“Close Pixelate”项目,可能这就是你需要的。

于 2013-04-03T02:32:09.030 回答
0

改进@thibaut-mottet 答案,因为我在“getDominantColor”方法上遇到编译器错误(“entry1”和“entry2”未定义)。

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;

public class ImageUtil {

    public static BufferedImage pixelate(BufferedImage imageToPixelate, int pixelSize) {
        BufferedImage pixelateImage = new BufferedImage(
            imageToPixelate.getWidth(),
            imageToPixelate.getHeight(),
            imageToPixelate.getType());

        for (int y = 0; y < imageToPixelate.getHeight(); y += pixelSize) {
            for (int x = 0; x < imageToPixelate.getWidth(); x += pixelSize) {
                BufferedImage croppedImage = getCroppedImage(imageToPixelate, x, y, pixelSize, pixelSize);
                Color dominantColor = getDominantColor(croppedImage);
                for (int yd = y; (yd < y + pixelSize) && (yd < pixelateImage.getHeight()); yd++) {
                    for (int xd = x; (xd < x + pixelSize) && (xd < pixelateImage.getWidth()); xd++) {
                        pixelateImage.setRGB(xd, yd, dominantColor.getRGB());
                    }
                }
            }
        }

        return pixelateImage;
    }

    public static BufferedImage getCroppedImage(BufferedImage image, int startx, int starty, int width, int height) {
        if (startx < 0) startx = 0;
        if (starty < 0) starty = 0;
        if (startx > image.getWidth()) startx = image.getWidth();
        if (starty > image.getHeight()) starty = image.getHeight();
        if (startx + width > image.getWidth()) width = image.getWidth() - startx;
        if (starty + height > image.getHeight()) height = image.getHeight() - starty;
        return image.getSubimage(startx, starty, width, height);
    }

    public static Color getDominantColor(BufferedImage image) {
        Map<Integer, Integer> colorCounter = new HashMap<>(100);
        for (int x = 0; x < image.getWidth(); x++) {
            for (int y = 0; y < image.getHeight(); y++) {
                int currentRGB = image.getRGB(x, y);
                int count = colorCounter.getOrDefault(currentRGB, 0);
                colorCounter.put(currentRGB, count + 1);
            }
        }
        return getDominantColor(colorCounter);
    }

    @SuppressWarnings("unchecked")
    private static Color getDominantColor(Map<Integer, Integer> colorCounter) {
        int dominantRGB = colorCounter.entrySet().stream()
            .max(new EntryComparator())
            .get()
            .getKey();
        return new Color(dominantRGB);
    }
}

@SuppressWarnings("rawtypes")
class EntryComparator implements Comparator {

    @SuppressWarnings("unchecked")
    @Override
    public int compare(Object o1, Object o2) {
        Entry<Integer, Integer> entry1 = (Map.Entry<Integer, Integer>) o1;
        Entry<Integer, Integer> entry2 = (Map.Entry<Integer, Integer>) o2;
        return (entry1.getValue() > entry2.getValue() ? 1 : -1);
    }
}

以完全相同的方式使用它:

img = ImageIO.read(new File("image.jpg"));
BufferedImage imagePixelated = ImageUtil.pixelate(img, PIX_SIZE);
ImageIO.write(imagePixelated, "jpg", new File("image-pixelated.jpg"));
于 2017-02-19T12:39:01.077 回答