生成素数的最快方法是使用筛子。这里我们使用 Eratosthenes 的分段筛来生成素数,一个一个没有最大值,按顺序生成;ps
是小于当前最大值的筛选素数列表,是当前段qs
中对应的最小倍数的偏移量。ps
def genPrimes():
def isPrime(n):
if n % 2 == 0: return n == 2
d = 3
while d * d <= n:
if n % d == 0: return False
d += 2
return True
def init(): # change to Sieve of Eratosthenes
ps, qs, sieve = [], [], [True] * 50000
p, m = 3, 0
while p * p <= 100000:
if isPrime(p):
ps.insert(0, p)
qs.insert(0, p + (p-1) / 2)
m += 1
p += 2
for i in xrange(m):
for j in xrange(qs[i], 50000, ps[i]):
sieve[j] = False
return m, ps, qs, sieve
def advance(m, ps, qs, sieve, bottom):
for i in xrange(50000): sieve[i] = True
for i in xrange(m):
qs[i] = (qs[i] - 50000) % ps[i]
p = ps[0] + 2
while p * p <= bottom + 100000:
if isPrime(p):
ps.insert(0, p)
qs.insert(0, (p*p - bottom - 1)/2)
m += 1
p += 2
for i in xrange(m):
for j in xrange(qs[i], 50000, ps[i]):
sieve[j] = False
return m, ps, qs, sieve
m, ps, qs, sieve = init()
bottom, i = 0, 1
yield 2
while True:
if i == 50000:
bottom = bottom + 100000
m, ps, qs, sieve = advance(m, ps, qs, sieve, bottom)
i = 0
elif sieve[i]:
yield bottom + i + i + 1
i += 1
else: i += 1
一个简单的isPrime
使用试除法就足够了,因为它将被限制为n的第四个根。段大小2 * delta
任意设置为 100000。此方法需要 O(sqrt n ) 空间用于筛分素数以及用于筛子的恒定空间。
isPrime
使用轮子生成候选素数并使用基于 2、7 和 61 基的强伪素测试来测试候选素数的速度较慢但节省空间;这对 2^32 有效。
def genPrimes(): # valid to 2^32
def isPrime(n):
def isSpsp(n, a):
d, s = n-1, 0
while d % 2 == 0:
d /= 2; s += 1
t = pow(a,d,n)
if t == 1: return True
while s > 0:
if t == n-1: return True
t = (t*t) % n; s -= 1
return False
for p in [2, 7, 61]:
if n % p == 0: return n == p
if not isSpsp(n, p): return False
return True
w, wheel = 0, [1,2,2,4,2,4,2,4,6,2,6,4,2,4,\
6,6,2,6,4,2,6,4,6,8,4,2,4,2,4,8,6,4,6,\
2,4,6,2,6,6,4,2,4,6,2,6,4,2,4,2,10,2,10]
p = 2; yield p
while True:
p = p + wheel[w]
w = 4 if w == 51 else w + 1
if isPrime(p): yield p
如果你对使用素数编程感兴趣,我在我的博客上谦虚地推荐这篇文章。