['b','b','b','a','a','c','c']
numpy.unique 给出
['a','b','c']
我怎样才能保留原始订单
['b','a','c']
很好的答案。奖金问题。为什么这些方法都不适用于这个数据集?http://www.uploadmb.com/dw.php?id=1364341573这是问题numpy sort wierd behavior
['b','b','b','a','a','c','c']
numpy.unique 给出
['a','b','c']
我怎样才能保留原始订单
['b','a','c']
很好的答案。奖金问题。为什么这些方法都不适用于这个数据集?http://www.uploadmb.com/dw.php?id=1364341573这是问题numpy sort wierd behavior
unique()
很慢,O(Nlog(N)),但你可以通过以下代码来做到这一点:
import numpy as np
a = np.array(['b','a','b','b','d','a','a','c','c'])
_, idx = np.unique(a, return_index=True)
print(a[np.sort(idx)])
输出:
['b' 'a' 'd' 'c']
Pandas.unique()
对于大数组 O(N) 来说要快得多:
import pandas as pd
a = np.random.randint(0, 1000, 10000)
%timeit np.unique(a)
%timeit pd.unique(a)
1000 loops, best of 3: 644 us per loop
10000 loops, best of 3: 144 us per loop
使用 的return_index
功能np.unique
。这将返回元素首次出现在输入中的索引。然后argsort
是那些指数。
>>> u, ind = np.unique(['b','b','b','a','a','c','c'], return_index=True)
>>> u[np.argsort(ind)]
array(['b', 'a', 'c'],
dtype='|S1')
a = ['b','b','b','a','a','c','c']
[a[i] for i in sorted(np.unique(a, return_index=True)[1])]
如果您尝试删除已排序的可迭代对象的重复项,则可以使用itertools.groupby
函数:
>>> from itertools import groupby
>>> a = ['b','b','b','a','a','c','c']
>>> [x[0] for x in groupby(a)]
['b', 'a', 'c']
这更像是 unix 'uniq' 命令,因为它假定列表已经排序。当你在未排序的列表上尝试它时,你会得到这样的东西:
>>> b = ['b','b','b','a','a','c','c','a','a']
>>> [x[0] for x in groupby(b)]
['b', 'a', 'c', 'a']
#List we need to remove duplicates from while preserving order x = ['key1', 'key3', 'key3', 'key2'] thisdict = dict.fromkeys(x) #dictionary keys are unique and order is preserved print(list(thisdict)) #convert back to list output: ['key1', 'key3', 'key2']
如果你想删除重复的条目,比如 Unix tool uniq
,这是一个解决方案:
def uniq(seq):
"""
Like Unix tool uniq. Removes repeated entries.
:param seq: numpy.array
:return: seq
"""
diffs = np.ones_like(seq)
diffs[1:] = seq[1:] - seq[:-1]
idx = diffs.nonzero()
return seq[idx]
使用 OrderedDict(比列表理解更快)
from collections import OrderedDict
a = ['b','a','b','a','a','c','c']
list(OrderedDict.fromkeys(a))