我有一个格式为的数据框(df)
Date Cs.137 In.111 I.123 I.131 X99m.Tc min max
1 2013-01-03 8.2 6.49 6.97 10.5 15 8.294 7.87930
2 2013-01-04 8.1 6.47 6.94 10.5 15 8.293 7.87835
3 2013-01-07 8.1 6.48 6.96 10.5 15 8.292 7.87740
4 2013-01-08 8.1 6.43 6.91 10.5 15 8.291 7.87645
5 2013-01-09 8.1 6.49 6.92 10.5 15 8.291 7.87645
6 2013-01-10 8.1 6.51 6.95 10.5 15 8.290 7.87550
我想将多个日期内各种同位素的测量活动绘制为散点图。为此,我重塑了数据
plot_Data <- melt(df[,c(1,2:6)], id="Date", value.name="Activity", variable.name="Isotope")
Date Isotope Activity
1 2013-01-03 Cs.137 8.2
2 2013-01-04 Cs.137 8.1
3 2013-01-07 Cs.137 8.1
4 2013-01-08 Cs.137 8.1
5 2013-01-09 Cs.137 8.1
6 2013-01-10 Cs.137 8.1
然后我使用melt
fromreshape2
p <- ggplot(plot_Data, aes(x=Date, y=Activity, col=Isotope)) + geom_point()+ theme_bw()
但是,我还想显示一个 geom_ribbon 以突出显示 Cs-137 活动的允许范围(由原始数据框中的 min 和 max 给出)。我可以使用自己创建这样的功能区
m <- ggplot(df) + geom_ribbon(data=df, aes(x=Date,ymin=min, ymax = max), alpha = 0.2, fill='blue')
但是,这是使用原始帧 pre_melted 数据帧。
当我尝试时,p + geom_ribbon(data=df, aes(x=Date,ymin=min, ymax = max), alpha = 0.2, fill='blue')
我收到错误消息Error in eval(expr, envir, enclos) : object 'Activity' not found
如何在原始图像上叠加色带?
这是可以重建剩余数据的原始数据帧
structure(list(Date = structure(c(15708, 15709, 15712, 15713,
15714, 15715, 15716, 15719, 15720, 15721, 15722, 15723, 15726,
15727, 15729, 15730, 15733, 15734, 15735, 15736, 15740, 15741,
15743, 15747, 15748, 15749, 15750, 15751, 15754, 15755, 15756,
15757, 15758, 15761, 15762, 15764, 15765, 15768, 15769, 15770,
15771, 15772), class = "Date"), Cs.137 = c(8.2, 8.1, 8.1, 8.1,
8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1,
8.1, 8.1, 8.1, 8.1, 8.2, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8,
8.2, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1),
In.111 = c(6.49, 6.47, 6.48, 6.43, 6.49, 6.51, 6.5, 6.47,
6.48, 6.4, 6.48, 6.48, 6.48, 6.49, 6.49, 6.47, 6.48, 6.48,
6.5, 6.47, 6.49, 6.55, 6.46, 6.49, 6.48, 6.48, 6.46, 6.48,
6.49, 6.44, 6.49, 6.46, 6.45, 6.46, 6.46, 6.43, 6.49, 6.47,
6.45, 6.43, 6.44, 6.44), I.123 = c(6.97, 6.94, 6.96, 6.91,
6.92, 6.95, 6.93, 6.92, 6.93, 7, 6.97, 6.96, 6.96, 6.94,
6.98, 6.97, 6.95, 6.95, 6.94, 6.96, 6.97, 7.01, 6.92, 7,
6.98, 6.97, 6.91, 6.99, 6.95, 6.88, 6.96, 6.91, 6.91, 6.93,
6.94, 6.94, 6.97, 6.93, 6.93, 6.93, 6.96, 6.94), I.131 = c(10.5,
10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.8, 10.5,
10.6, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5,
10.6, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5,
10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.4, 10.5, 10.4,
10.5), X99m.Tc = c(15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15.1, 15, 15, 15.1, 15, 15, 15, 15, 15.1, 15, 15.1, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14.9, 15,
15, 15, 15, 15, 15), Exp_Act = c(8.294, 8.293, 8.292, 8.291,
8.291, 8.29, 8.29, 8.288, 8.288, 8.287, 8.287, 8.286, 8.285,
8.284, 8.283, 8.283, 8.281, 8.28, 8.28, 8.279, 8.277, 8.277,
8.276, 8.274, 8.273, 8.273, 8.272, 8.272, 8.27, 8.27, 8.269,
8.269, 8.268, 8.266, 8.266, 8.265, 8.264, 8.263, 8.262, 8.262,
8.261, 8.261), Exp_Act_0.95 = c(7.8793, 7.87835, 7.8774,
7.87645, 7.87645, 7.8755, 7.8755, 7.8736, 7.8736, 7.87265,
7.87265, 7.8717, 7.87075, 7.8698, 7.86885, 7.86885, 7.86695,
7.866, 7.866, 7.86505, 7.86315, 7.86315, 7.8622, 7.8603,
7.85935, 7.85935, 7.8584, 7.8584, 7.8565, 7.8565, 7.85555,
7.85555, 7.8546, 7.8527, 7.8527, 7.85175, 7.8508, 7.84985,
7.8489, 7.8489, 7.84795, 7.84795), Exp_Act_1.05 = c(8.7087,
8.70765, 8.7066, 8.70555, 8.70555, 8.7045, 8.7045, 8.7024,
8.7024, 8.70135, 8.70135, 8.7003, 8.69925, 8.6982, 8.69715,
8.69715, 8.69505, 8.694, 8.694, 8.69295, 8.69085, 8.69085,
8.6898, 8.6877, 8.68665, 8.68665, 8.6856, 8.6856, 8.6835,
8.6835, 8.68245, 8.68245, 8.6814, 8.6793, 8.6793, 8.67825,
8.6772, 8.67615, 8.6751, 8.6751, 8.67405, 8.67405)), row.names = c(NA,
-42L), .Names = c("Date", "Cs.137", "In.111", "I.123", "I.131",
"X99m.Tc", "Exp_Act", "Exp_Act_0.95", "Exp_Act_1.05"), class = "data.frame")
谢谢