我一直在研究一个项目,简而言之,它将生成一个二维数字矩阵,其中“空”空间由 0 表示。每个数字都由一个节点列表连接。节点包含数字值、数字的 X 和 Y 位置,以及与其相邻的所有空间(其“邻居”)的列表,但与该点对角相邻的空间除外,因为该算法仅允许向上移动、下、左、右。我遇到的问题是,正如标题所暗示的那样,我遇到了一些堆栈溢出问题。我将在下面发布我的代码,如果有人可以提供帮助,我将不胜感激。
CoordList* Puzzle::GeneratePath(CoordList* Path, int GoalX, int GoalY)
{
int CurrX;
int CurrY;
CurrX = Path->NeighborX;
CurrY = Path->NeighborY;
if(CurrX == GoalX && CurrY == GoalY)
{
return(Path);
}
else
{
int NewX;
int NewY;
double NewDistance;
int OldX;
int OldY;
double OldDistance;
CoordList* PointNeighbors = NULL;
CoordList* BestChoice = NULL;
for(int i = 0; i < NumDirections; i++)
{
CoordList* NewNeighbor = new CoordList;
NewX = CurrX + DirectsX[i];
NewY = CurrY + DirectsY[i];
if(IsPossible(NewX, NewY))
{
NewNeighbor->NeighborX = NewX;
NewNeighbor->NeighborY = NewY;
if(PointNeighbors == NULL)
{
NewNeighbor->next = NULL;
PointNeighbors = NewNeighbor;
}
else
{
NewNeighbor->next = PointNeighbors;
PointNeighbors = NewNeighbor;
}
}
//delete NewNeighbor;
}
while(PointNeighbors != NULL)
{
if(BestChoice == NULL)
{
CoordList* AChoice = new CoordList;
AChoice->next = NULL;
NewX = PointNeighbors->NeighborX;
NewY = PointNeighbors->NeighborY;
AChoice->NeighborX = NewX;
AChoice->NeighborY = NewY;
BestChoice = AChoice;
PointNeighbors = PointNeighbors->next;
//delete AChoice;
}
else
{
NewX = PointNeighbors->NeighborX;
NewY = PointNeighbors->NeighborY;
NewDistance = DetermineDistance(NewX, NewY, GoalX, GoalY);
OldX = BestChoice->NeighborX;
OldY = BestChoice->NeighborY;
OldDistance = DetermineDistance(OldX, OldY, GoalX, GoalY);
if(NewDistance < OldDistance)
{
BestChoice->NeighborX = NewX;
BestChoice->NeighborY = NewY;
}
PointNeighbors = PointNeighbors->next;
}
}
BestChoice->next = Path;
Path = BestChoice;
return(GeneratePath(Path, GoalX, GoalY));
}
}
我被要求提供我的确定距离功能。这只是传统点距离公式的简单实现。下面提供。
double Puzzle::DetermineDistance(int OneX, int OneY, int TwoX, int TwoY)
{
int DifX;
int DifY;
double PointSum;
DifX = (TwoX - OneX);
DifY = (TwoY - OneY);
DifX = (DifX * DifX);
DifY = (DifY * DifY);
PointSum = (DifX + DifY);
return (sqrt(PointSum));
}
下面是 IsPossible 函数,它确定 X 和 Y 值是否位于可能的网格空间内。
bool Puzzle::IsPossible(int x, int y)
{
if(x + 1 > Size - 1 || x - 1 < 0
|| y + 1 > Size - 1 || y - 1 < 0)
{
return false;
}
return true;
}