所以我试图对矩阵的行求和,其中有 inf。我如何对行求和,省略inf?
问问题
12585 次
5 回答
36
将您的矩阵乘以 的结果is.finite(m)
并使用 调用rowSums
乘积na.rm=TRUE
。这有效,因为Inf*0
is NaN
。
m <- matrix(c(1:3,Inf,4,Inf,5:6),4,2)
rowSums(m*is.finite(m),na.rm=TRUE)
于 2013-03-13T18:26:54.063 回答
21
A[is.infinite(A)]<-NA
rowSums(A,na.rm=TRUE)
一些基准比较:
library(microbenchmark)
rowSumsMethod<-function(A){
A[is.infinite(A)]<-NA
rowSums(A,na.rm=TRUE)
}
applyMethod<-function(A){
apply( A , 1 , function(x){ sum(x[!is.infinite(x)])})
}
rowSumsMethod2<-function(m){
rowSums(m*is.finite(m),na.rm=TRUE)
}
rowSumsMethod0<-function(A){
A[is.infinite(A)]<-0
rowSums(A)
}
A1 <- matrix(sample(c(1:5, Inf), 50, TRUE), ncol=5)
A2 <- matrix(sample(c(1:5, Inf), 5000, TRUE), ncol=5)
microbenchmark(rowSumsMethod(A1),rowSumsMethod(A2),
rowSumsMethod0(A1),rowSumsMethod0(A2),
rowSumsMethod2(A1),rowSumsMethod2(A2),
applyMethod(A1),applyMethod(A2))
Unit: microseconds
expr min lq median uq max neval
rowSumsMethod(A1) 13.063 14.9285 16.7950 19.3605 1198.450 100
rowSumsMethod(A2) 212.726 220.8905 226.7220 240.7165 307.427 100
rowSumsMethod0(A1) 11.663 13.9960 15.3950 18.1940 112.894 100
rowSumsMethod0(A2) 103.098 109.6290 114.0610 122.9240 159.545 100
rowSumsMethod2(A1) 8.864 11.6630 12.5960 14.6955 49.450 100
rowSumsMethod2(A2) 57.380 60.1790 63.4450 67.4100 81.172 100
applyMethod(A1) 78.839 84.4380 92.1355 99.8330 181.005 100
applyMethod(A2) 3996.543 4221.8645 4338.0235 4552.3825 6124.735 100
所以约书亚的方法赢了!而且 apply 方法显然比其他两种方法慢(当然相对而言)。
于 2013-03-13T18:15:10.730 回答
11
我会使用apply
andis.infinite
来避免用@Hemmo的答案替换Inf
值。NA
> set.seed(1)
> Mat <- matrix(sample(c(1:5, Inf), 50, TRUE), ncol=5)
> Mat # this is an example
[,1] [,2] [,3] [,4] [,5]
[1,] 2 2 Inf 3 5
[2,] 3 2 2 4 4
[3,] 4 5 4 3 5
[4,] Inf 3 1 2 4
[5,] 2 5 2 5 4
[6,] Inf 3 3 5 5
[7,] Inf 5 1 5 1
[8,] 4 Inf 3 1 3
[9,] 4 3 Inf 5 5
[10,] 1 5 3 3 5
> apply(Mat, 1, function(x) sum(x[!is.infinite(x)]))
[1] 12 15 21 10 18 16 12 11 17 17
于 2013-03-13T18:22:46.727 回答
8
尝试这个...
m <- c( 1 ,2 , 3 , Inf , 4 , Inf ,5 )
sum(m[!is.infinite(m)])
或者
m <- matrix( sample( c(1:10 , Inf) , 100 , rep = TRUE ) , nrow = 10 )
sums <- apply( m , 1 , FUN = function(x){ sum(x[!is.infinite(x)])})
> m
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 8 9 7 Inf 9 2 2 6 1 Inf
[2,] 8 7 4 5 9 5 8 4 7 10
[3,] 7 9 3 4 7 3 3 6 9 4
[4,] 7 Inf 2 6 4 8 3 1 9 9
[5,] 4 Inf 7 5 9 5 3 5 9 9
[6,] 7 3 7 Inf 7 3 7 3 7 1
[7,] 5 7 2 1 Inf 1 9 8 1 5
[8,] 4 Inf 10 Inf 8 10 4 9 7 2
[9,] 10 7 9 7 2 Inf 4 Inf 4 6
[10,] 9 4 6 3 9 6 6 5 1 8
> sums
[1] 44 67 55 49 56 45 39 54 49 57
于 2013-03-13T18:14:51.180 回答
3
这是一种“非应用”且非破坏性的方法:
rowSums( matrix(match(A, A[is.finite(A)]), nrow(A)), na.rm=TRUE)
[1] 2 4
尽管它相当有效,但它不如 Johsua 的乘法方法快。
于 2013-03-13T18:48:10.597 回答