我目前正在阅读 Oreilly 的 3D Programming for iOS 一书,并将所有内容从 C++ 转换为 Objective-C,用于多种目的,包括后期优化以及对函数和 API 的深入理解。我更愿意学习利用新的 GLKit,而不是依赖 C++ 目前专门用于 iOS 开发的语言。以下是我迄今为止用于创建本书提供的 3D 圆锥模型的翻译代码。不幸的是,底部圆盘和锥体本身只出现了一小块,我不知道为什么。任何人都可以在这方面帮助我。拜托,如果您看到任何优化(我还没有完成,因为我还在翻译)或关于做任何事情的更好方法的建议,我很想听听一些反馈。我真的很想帮助找到问题。一世' 找了几天没有结果。下面附上我正在输出的图像(它应该是一个完整的 3D 圆锥体)。
//
// IRenderingEngine2.m
// HelloArrow
//
// Created by TheGamingArt on 3/4/13.
// Copyright (c) 2013 Brandon Levasseur. All rights reserved.
//
#import "IRenderingEngine2.h"
#define STRINGIFY(A) #A
#import "Simple.frag"
#import "Simple.vert"
static const float RevolutionsPerSecond = 1;
static const float AnimationDuration = 0.25f;
static const float coneSlices = 40.f;
static const int numberOfConeVerticies = ((coneSlices/*number of coneSlices*/ +1) *2);
static const int numberOfDiskVerticies = (coneSlices + 2);
typedef struct{
GLKVector3 Position;
GLKVector4 Color;
}Vertex;
typedef struct{
GLKQuaternion Start; //starting orientation
GLKQuaternion End; //ending orientation
GLKQuaternion Current; //current interpolated orientation
float Elapsed; //time span in seconds for a slerp fraction between 0 and 1
float Duration; //time span in seconds for a slerp fraction between 0 and 1
}Animation; //enables smooth 3D transitions
@interface IRenderingEngine2(){
GLuint framebuffer;
GLuint colorRenderbuffer;
GLuint depthRenderbuffer; //Because of this being 3D, need depthRender. If only 2d, only need colorRender
float currentAngle; //angles in degrees
float desiredAngle; //added for smooth rotation transition
Vertex cone[numberOfConeVerticies];
Vertex disk[numberOfDiskVerticies];
Animation animation;
GLuint simpleProgram;
}
-(float) getRotationDirection;
-(void)applyRotation:(float)degrees;
-(GLuint)buildProgramWithVertex:(const char *)vShaderSource andFragment:(const char *)fShaderSource;
-(void)applyOrthoWithMaxX:(float)maxX andMaxY:(float)maxY;
-(GLuint)buildShaderWithSource:(const char *)source shaderType:(GLenum)type;
-(GLKQuaternion) quaternionCreateFromVectors:(GLKVector3)v0 :(GLKVector3)v1;
@end
@implementation IRenderingEngine2
-(id)init{
self = [super init];
if (self) {
glGenRenderbuffers(1, &colorRenderbuffer);
glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
}
return self;
}
-(void)setRenderWidth:(int)width andHeight:(int)height{
const float coneRadius = 0.5f;
const float coneHeight = 1.866f;
// const int coneSlices = 40;
{
//Generate vertices for the disk....
//Uses triangle fan so the total number of vertices is n+2: one exxtra vertex for the center and another for closing the loop
//Allocate space for the disk vertices.
//m_disk.resize(coneSlices + 2)
int vertexIterator = 0;
disk[vertexIterator].Color = GLKVector4Make(0.75f, 0.75f, 0.75f, 1.0f);
disk[vertexIterator].Position.x = 0.0f;
disk[vertexIterator].Position.y = 1.0f - coneHeight;
disk[vertexIterator].Position.z = 0.0f;
vertexIterator++;
//Initialize the rim vertices of the triangle fan
const float dtheta = M_2_PI / coneSlices;
for (float theta = 0.0f; vertexIterator != numberOfDiskVerticies; theta += dtheta) {
disk[vertexIterator].Color = GLKVector4Make(0.75f, 0.75f, 0.75f, 1.0f);
disk[vertexIterator].Position.x = coneRadius * cosf(theta);
disk[vertexIterator].Position.y = 1 - coneHeight;
disk[vertexIterator].Position.z = coneRadius * sinf(theta);
vertexIterator++;
}
}
{
//Generate vertices for body of cone
int vertexIterator = 0;
//Initialize the vertices of the triangle strip.
const float dtheta = M_2_PI /coneSlices;
for (float theta = 0; vertexIterator != numberOfConeVerticies ; theta += dtheta) {
//Grayscale gradient
float brightness = abs(sinf(theta)); // creates a grayscale gradient as a cheap way to simulate lighting.. aka baked lighting hack
GLKVector4 color = GLKVector4Make(brightness, brightness, brightness, 1);
//Apex vertex
cone[vertexIterator].Position = GLKVector3Make(0.0f, 1.0f, 0.0f);
cone[vertexIterator].Color = color;
vertexIterator++;
//Rim vertex
cone[vertexIterator].Position.x = coneRadius * cosf(theta);
cone[vertexIterator].Position.y = 1 - coneHeight;
cone[vertexIterator].Position.z = coneRadius * sinf(theta);
cone[vertexIterator].Color = color;
vertexIterator++;
}
}
//Create the depth buffer
glGenRenderbuffers(1, &depthRenderbuffer);
glBindRenderbuffer(GL_RENDERBUFFER, depthRenderbuffer);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, width * [[UIScreen mainScreen] scale], height * [[UIScreen mainScreen] scale]);
//Create the framebuffer object and attach the color buffer.
glGenFramebuffers(1, &framebuffer);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, colorRenderbuffer);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depthRenderbuffer);
//Bind the color buffer for rendering
glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
glViewport(0, 0, width * [[UIScreen mainScreen] scale], height * [[UIScreen mainScreen] scale]);
glEnable(GL_DEPTH_TEST);
simpleProgram = [self buildProgramWithVertex:SimpleVertexShader andFragment:SimpleFragmentShader];
glUseProgram(simpleProgram);
//Set the Projection Matrix
GLint projectionUniform = glGetUniformLocation(simpleProgram, "Projection");
GLKMatrix4 projectionMatrix = GLKMatrix4MakeFrustum(-1.6f, 1.6f, -2.4f, 2.4f, 5.0f, 10.0f);
glUniformMatrix4fv(projectionUniform, 1.0f, 0.0f, &projectionMatrix.m00);
}
-(void)render{
GLuint positionSlot = glGetAttribLocation(simpleProgram, "Position");
GLuint colorSlot = glGetAttribLocation(simpleProgram, "SourceColor");
glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnableVertexAttribArray(positionSlot);
glEnableVertexAttribArray(colorSlot);
// animation.Current.w = 1.0f;
// animation.End.w = 1.0f;
// animation.Start.w = 1.0f;
GLKMatrix4 rotation = GLKMatrix4MakeWithQuaternion(animation.Current);
//Set the model-view matrix
GLint modelviewUniform = glGetUniformLocation(simpleProgram, "Modelview");
GLKMatrix4 modelviewMatrix = GLKMatrix4Translate(rotation, 0.0f, 0.0f, -7.0f);
glUniformMatrix4fv(modelviewUniform, 1.0f, 0.0f, &modelviewMatrix.m00);
//Draw the cone
{
GLsizei stride = sizeof(Vertex);
const GLvoid *pCoords = &cone[0].Position.x;
const GLvoid *pColors = &cone[0].Color.r; //changed here to r from x for Red
glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, stride, pCoords);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT, GL_FALSE, stride, pColors);
glDrawArrays(GL_TRIANGLE_STRIP, 0, sizeof(cone)/sizeof(Vertex));
}
//Draw the disk that caps off the base of the cone
{
GLsizei stride = sizeof(Vertex);
const GLvoid *pCoords = &disk[0].Position.x;
const GLvoid *pColors = &disk[0].Color.r; //changed from x to r
glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, stride, pCoords);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT, GL_FALSE, stride, pColors);
glDrawArrays(GL_TRIANGLE_FAN, 0, sizeof(disk)/sizeof(Vertex));
}
glDisableVertexAttribArray(positionSlot);
glDisableVertexAttribArray(colorSlot);
}
-(void)updateAnimationForTime:(float)timeStep{
NSString *currentQuaternion = NSStringFromGLKQuaternion(animation.Current);
NSString *endQuaternion = NSStringFromGLKQuaternion(animation.End);
if ([currentQuaternion isEqualToString:endQuaternion]) {
return;
}
animation.Elapsed += timeStep;
if (animation.Elapsed >= AnimationDuration) {
animation.Current = animation.End;
}
else{
float mu = animation.Elapsed / AnimationDuration;
animation.Current = GLKQuaternionSlerp(animation.Start, animation.End, mu);
}
}
-(void)onRotate:(enum DeviceOrientation) orientation{
GLKVector3 direction;
switch (orientation) {
case DeviceOrientationUnknown:
case DeviceOrientationPortrait:
direction = GLKVector3Make(0.0f, 1.0f, 0.0f);
break;
case DeviceOrientationPortraitUpsideDown:
direction = GLKVector3Make(0.0f, -1.0f, 0.0f);
break;
case DeviceOrientationFaceDown:
direction = GLKVector3Make(0.0f, 0.0f, -1.0f);
break;
case DeviceOrientationFaceUp:
direction = GLKVector3Make(0.0f, 0.0f, 1.0f);
break;
case DeviceOrientationLandscapeLeft:
direction = GLKVector3Make(+1.0f, 0.0f, 0.0f);
break;
case DeviceOrientationLandscapeRight:
direction = GLKVector3Make(-1.0f, 0.0f, 0.0f);
break;
}
animation.Elapsed = 0;
animation.Start = animation.Current = animation.End;
// animation.End = GLKQuaternionMakeWi
GLKVector3 vector = GLKVector3Make(0.0f, 1.0f, 0.0f);
animation.End = [self quaternionCreateFromVectors:vector :direction];
// (GLKVector3Make(0.0f, 1.0f, 0.0f), direction);
}
-(float)getRotationDirection{
float delta = desiredAngle - currentAngle;
// NSLog(@"delta: %f", delta);
if (delta == 0) {
return 0;
}
bool counterclockwise = ((delta > 0 && delta <= 180) || (delta < -180));
float test = counterclockwise ? +1.0 : -1.0;
NSLog(@"Return Value: %f",test );
return counterclockwise ? +1 : -1; //problem
}
-(void)applyRotation:(float)degrees{
}
-(void)applyOrthoWithMaxX
:(float)maxX andMaxY:(float)maxY{
}
-(GLuint)buildProgramWithVertex:(const char *)vShaderSource andFragment:(const char *)fShaderSource{
GLuint vertexShader = [self buildShaderWithSource:vShaderSource shaderType:GL_VERTEX_SHADER];
GLuint fragmentShader = [self buildShaderWithSource:fShaderSource shaderType:GL_FRAGMENT_SHADER];
GLuint programHandle = glCreateProgram();
glAttachShader(programHandle, vertexShader);
glAttachShader(programHandle, fragmentShader);
glLinkProgram(programHandle);
GLint linkSuccess;
glGetProgramiv(programHandle, GL_LINK_STATUS, &linkSuccess);
if (linkSuccess == GL_FALSE) {
GLchar messages[256];
glGetProgramInfoLog(programHandle, sizeof(messages), 0, &messages[0]);
NSLog(@"%s", messages);
exit(1);
}
return programHandle;
}
-(GLuint)buildShaderWithSource:(const char *)source shaderType:(GLenum)type{
GLuint shaderHandle = glCreateShader(type);
glShaderSource(shaderHandle, 1, &source, 0);
glCompileShader(shaderHandle);
GLint compileSuccess;
glGetShaderiv(shaderHandle, GL_COMPILE_STATUS, &compileSuccess);
if (compileSuccess == GL_FALSE) {
GLchar messages[256];
glGetShaderInfoLog(shaderHandle, sizeof(messages), 0, &messages[0]);
NSLog(@"%s", messages);
exit(1);
}
return shaderHandle;
}
-(GLKQuaternion) createFromAxis:(GLKVector3)axis withAngle:(float)radians //Minor calculating issues
{
GLKQuaternion q;
q.w = cosf(radians / 2);
q.x = q.y = q.z = sinf(radians / 2);
q.x *= axis.x;
q.y *= axis.y;
q.z *= axis.z;
return q;
}
-(GLKQuaternion) quaternionCreateFromVectors:(GLKVector3)v0 :(GLKVector3)v1 // Minor calculating issues
{
GLKVector3 v1Negative = GLKVector3Negate(v1);
NSLog(@"strings: v0: %@ v1:%@", NSStringFromGLKVector3(v0), NSStringFromGLKVector3(v1Negative));
if (/*NSStringFromGLKVector3(v0) == NSStringFromGLKVector3(v1Negative)*/ v0.g == v1Negative.g)
return [self createFromAxis:GLKVector3Make(1.0f, 0.0f, 0.0f) withAngle:M_1_PI];
GLKVector3 c = GLKVector3CrossProduct(v0, v1);// v0.Cross(v1);
int d = GLKVector3DotProduct(v0, v1); // v0.Dot(v1);
int s = sqrt((1 + d) *2);
GLKQuaternion q;
q.x = c.x / s;
q.y = c.y / s;
q.z = c.z / s;
q.w = s / 2.0f;
return q;
}
@end
在大多数情况下,我想让它运行,然后需要学习如何实现 GLKQuanternions 以添加诸如
m_animation.End = Quaternion::CreateFromVectors(vec3(0, 1, 0), direction);
又名:
inline QuaternionT<T> QuaternionT<T>::CreateFromVectors(const Vector3<T>& v0, const Vector3<T>& v1)
{
if (v0 == -v1)
return QuaternionT<T>::CreateFromAxisAngle(vec3(1, 0, 0), Pi);
Vector3<T> c = v0.Cross(v1);
T d = v0.Dot(v1);
T s = std::sqrt((1 + d) * 2);
QuaternionT<T> q;
q.x = c.x / s;
q.y = c.y / s;
q.z = c.z / s;
q.w = s / 2.0f;
return q;
}
作为一个临时插件,我在 Objective-C 中为四元数创建了相同的方法
-(GLKQuaternion) createFromAxis:(GLKVector3)axis withAngle:(float)radians //Minor calculating issues
{
GLKQuaternion q;
q.w = cosf(radians / 2);
q.x = q.y = q.z = sinf(radians / 2);
q.x *= axis.x;
q.y *= axis.y;
q.z *= axis.z;
return q;
}
-(GLKQuaternion) quaternionCreateFromVectors:(GLKVector3)v0 :(GLKVector3)v1 // Minor calculating issues
{
GLKVector3 v1Negative = GLKVector3Negate(v1);
NSLog(@"strings: v0: %@ v1:%@", NSStringFromGLKVector3(v0), NSStringFromGLKVector3(v1Negative));
if (/*NSStringFromGLKVector3(v0) == NSStringFromGLKVector3(v1Negative)*/ v0.g == v1Negative.g)
return [self createFromAxis:GLKVector3Make(1.0f, 0.0f, 0.0f) withAngle:M_1_PI];
GLKVector3 c = GLKVector3CrossProduct(v0, v1);// v0.Cross(v1);
int d = GLKVector3DotProduct(v0, v1); // v0.Dot(v1);
int s = sqrt((1 + d) *2);
GLKQuaternion q;
q.x = c.x / s;
q.y = c.y / s;
q.z = c.z / s;
q.w = s / 2.0f;
return q;
}