我正在尝试使用 BFS 搜索、DFS、贪婪和 A* 等技术解决 8tile 难题,并使用曼哈顿距离作为我的启发式解决方案。
问题是,虽然我可以解决很多问题,但问题在于一些谜题,我扩展父节点时得到的子节点可能已经在较旧的节点中。
我不知道我是否能够很好地解释自己,但我的主要问题是我试图查看我创建的新节点是否已经在旧节点上。
有了这个问题,我通常会进入深度 9,然后我的程序不会推进或给出解决方案。
我的一个想法是使用代码:
if node in prev:
continue
prev.append(node)
但我想我走错路了。
我在 python 上做这个,这是我的代码,以防有人可以帮助我。
#!/usr/bin/python
import sys
import copy
class Board:
def __init__(self, matrix, whitepos=None):
self.matrix = matrix
self.whitepos = whitepos
if not whitepos:
for y in xrange(3):
for x in xrange(3):
if board[y][x] == 0:
self.whitepos = (x, y)
def is_final_state(board):
final = [[1, 2, 3], [8, 0, 4], [7, 6, 5]]
for y in xrange(3):
for x in xrange(3):
if board.matrix[y][x] != final[y][x]:
return False
return True
def get_whitepos(board):
return board.whitepos
def move(board, x, y, dx, dy):
b = copy.deepcopy(board.matrix)
b[y][x] = b[y + dy][x + dx]
b[y + dy][x + dx] = 0
return Board(b, (x + dx, y + dy))
def manhattan_heur(board):
finalpos = [(1, 1), (0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2),
(0, 1)]
cost = 0
for y in xrange(3):
for x in xrange(3):
t = board.matrix[y][x]
xf, yf = finalpos[t]
cost += abs(xf - x) + abs(yf - y)
return cost
def wrongplace_heur(board):
finalpos = [(1, 1), (0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2),
(0, 1)]
cost = 0
for y in xrange(3):
for x in xrange(3):
t = board.matrix[y][x]
if finalpos[t] != (x, y):
cost += 1
return cost
def heuristic(board):
return manhattan_heur(board)
class Node:
def __init__(self, board, parent):
self.state = board
self.parent = parent
if not parent:
self.g = 0
else:
self.g = parent.g + 1
self.h = heuristic(board)
def test_goal(self):
return is_final_state(self.state)
def expand(self):
children = []
b = self.state
x, y = get_whitepos(b)
if x > 0:
children.append(Node(move(b, x, y, -1, 0), self))
if x < 2:
children.append(Node(move(b, x, y, +1, 0), self))
if y > 0:
children.append(Node(move(b, x, y, 0, -1), self))
if y < 2:
children.append(Node(move(b, x, y, 0, +1), self))
return children
class Solution:
def __init__(self, node, mem_needed, steps):
self.node = node
self.mem_needed = mem_needed
self.iterations = steps
def inc(self, other):
self.node = other.node
self.mem_needed = max(self.mem_needed, other.mem_needed)
self.iterations += other.iterations
def search(board, queue_fn, queue_arg=None):
max_nodes = 1
steps = 0
nodes = [Node(Board(board), None)]
prev = []
depth = 0
while nodes:
node = nodes.pop(0)
if node.g > depth:
depth = node.g
print depth
if node in prev:
continue
prev.append(node)
if node.test_goal():
return Solution(node, max_nodes, steps)
new_nodes = node.expand()
nodes = queue_fn(nodes, new_nodes, queue_arg)
max_nodes = max(max_nodes, len(nodes))
steps += 1
return Solution(None, max_nodes, steps)
def fifo_queue(nodes, new_nodes, _):
nodes.extend(new_nodes)
return nodes
def bl_search(board):
return search(board, fifo_queue)
def lifo_queue(nodes, new_nodes, _):
new_nodes.extend(nodes)
return new_nodes
def dfs_search(board):
return search(board, lifo_queue)
def bpl_queue(nodes, new_nodes, max_depth):
def f(n):
return n.g <= max_depth
new_nodes = filter(f, new_nodes)
new_nodes.extend(nodes)
return new_nodes
def bpi_search(board):
solution = Solution(None, 0, 0)
for max_depth in xrange(0, sys.maxint):
sol = search(board, bpl_queue, max_depth)
solution.inc(sol)
if solution.node:
return solution
def sort_queue(nodes, new_nodes, cmp):
nodes.extend(new_nodes)
nodes.sort(cmp)
return nodes
def guloso2_search(board):
def cmp(n1, n2):
return n1.h - n2.h
return search(board, sort_queue, cmp)
def astar_search(board):
def cmp(n1, n2):
return (n1.g + n1.h) - (n2.g + n2.h)
return search(board, sort_queue, cmp)
def print_solution(search, sol):
print
print "*", search
node = sol.node
if node:
print "moves:", node.g
while node:
print "\t", node.state.matrix
node = node.parent
else:
print "no solution found"
print "nodes needed:", sol.mem_needed
print "iterations: ", sol.iterations
board = [[6, 5, 7], [2, 0, 1], [8, 4, 3]]
print_solution("bl", bl_search(board))
print_solution("dfs", dfs_search(board))
print_solution("bpi", bpi_search(board))
print_solution("guloso2", guloso2_search(board))
print_solution("astar", astar_search(board))