49

这个问题导致了一个新的 R 包: wrswoR

R 的默认采样不使用替换sample.int似乎需要二次运行时间,例如,当使用从均匀分布中提取的权重时。对于大样本量,这很慢。有人知道可以在 R 中使用的更快的实现吗?两个选项是“rejection sampling with replacement”(参见stats.sx 上的这个问题)和Wong 和 Easton(1980)的算法(在StackOverflow 答案中使用 Python 实现)。

感谢 Ben Bolker 暗示了在sample.int使用replace=F和非均匀权重调用时在内部调用的 C 函数:ProbSampleNoReplace。实际上,代码显示了两个嵌套for循环(第 420 行 ff 的行random.c)。

这是根据经验分析运行时间的代码:

library(plyr)

sample.int.test <- function(n, p) {
    sample.int(2 * n, n, replace=F, prob=p); NULL }

times <- ldply(
  1:7,
  function(i) {
    n <- 1024 * (2 ** i)
    p <- runif(2 * n)
    data.frame(
      n=n,
      user=system.time(sample.int.test(n, p), gcFirst=T)['user.self'])
  },
  .progress='text'
)

times

library(ggplot2)
ggplot(times, aes(x=n, y=user/n)) + geom_point() + scale_x_log10() +
  ylab('Time per unit (s)')

# Output:
       n   user
1   2048  0.008
2   4096  0.028
3   8192  0.100
4  16384  0.408
5  32768  1.645
6  65536  6.604
7 131072 26.558

阴谋

编辑:感谢 Arun 指出未加权采样似乎没有这种性能损失。

4

3 回答 3

24

更新:

Efraimidis 和 Spirakis算法的Rcpp实现(感谢 @Hemmo、@Dinrem、@krlmlr 和@rtlgrmpf):

library(inline)
library(Rcpp)
src <- 
'
int num = as<int>(size), x = as<int>(n);
Rcpp::NumericVector vx = Rcpp::clone<Rcpp::NumericVector>(x);
Rcpp::NumericVector pr = Rcpp::clone<Rcpp::NumericVector>(prob);
Rcpp::NumericVector rnd = rexp(x) / pr;
for(int i= 0; i<vx.size(); ++i) vx[i] = i;
std::partial_sort(vx.begin(), vx.begin() + num, vx.end(), Comp(rnd));
vx = vx[seq(0, num - 1)] + 1;
return vx;
'
incl <- 
'
struct Comp{
  Comp(const Rcpp::NumericVector& v ) : _v(v) {}
  bool operator ()(int a, int b) { return _v[a] < _v[b]; }
  const Rcpp::NumericVector& _v;
};
'
funFast <- cxxfunction(signature(n = "Numeric", size = "integer", prob = "numeric"),
                       src, plugin = "Rcpp", include = incl)

# See the bottom of the answer for comparison
p <- c(995/1000, rep(1/1000, 5))
n <- 100000
system.time(print(table(replicate(funFast(6, 3, p), n = n)) / n))

      1       2       3       4       5       6 
1.00000 0.39996 0.39969 0.39973 0.40180 0.39882 
   user  system elapsed 
   3.93    0.00    3.96 
# In case of:
# Rcpp::IntegerVector vx = Rcpp::clone<Rcpp::IntegerVector>(x);
# i.e. instead of NumericVector
      1       2       3       4       5       6 
1.00000 0.40150 0.39888 0.39925 0.40057 0.39980 
   user  system elapsed 
   1.93    0.00    2.03 

旧版:

让我们尝试一些可能的方法:

带替换的简单拒绝抽样。这是一个比sample.int.rej@krlmlr 提供的更简单的功能,即样本大小始终等于n. 正如我们将看到的,假设权重均匀分布,它仍然非常快,但在另一种情况下非常慢。

fastSampleReject <- function(all, n, w){
  out <- numeric(0)
  while(length(out) < n)
    out <- unique(c(out, sample(all, n, replace = TRUE, prob = w)))
  out[1:n]
}

Wong 和 Easton (1980) 的算法。这是Python 版本的实现。它很稳定,我可能会遗漏一些东西,但与其他功能相比它要慢得多。

fastSample1980 <- function(all, n, w){
  tws <- w
  for(i in (length(tws) - 1):0)
    tws[1 + i] <- sum(tws[1 + i], tws[1 + 2 * i + 1], 
                      tws[1 + 2 * i + 2], na.rm = TRUE)      
  out <- numeric(n)
  for(i in 1:n){
    gas <- tws[1] * runif(1)
    k <- 0        
    while(gas > w[1 + k]){
      gas <- gas - w[1 + k]
      k <- 2 * k + 1
      if(gas > tws[1 + k]){
        gas <- gas - tws[1 + k]
        k <- k + 1
      }
    }
    wgh <- w[1 + k]
    out[i] <- all[1 + k]        
    w[1 + k] <- 0
    while(1 + k >= 1){
      tws[1 + k] <- tws[1 + k] - wgh
      k <- floor((k - 1) / 2)
    }
  }
  out
}

Wong 和 Easton 对算法的 Rcpp 实现。可能它可以进一步优化,因为这是我的第一个可用Rcpp功能,但无论如何它运行良好。

library(inline)
library(Rcpp)

src <-
'
Rcpp::NumericVector weights = Rcpp::clone<Rcpp::NumericVector>(w);
Rcpp::NumericVector tws = Rcpp::clone<Rcpp::NumericVector>(w);
Rcpp::NumericVector x = Rcpp::NumericVector(all);
int k, num = as<int>(n);
Rcpp::NumericVector out(num);
double gas, wgh;

if((weights.size() - 1) % 2 == 0){
  tws[((weights.size()-1)/2)] += tws[weights.size()-1] + tws[weights.size()-2];
}
else
{
  tws[floor((weights.size() - 1)/2)] += tws[weights.size() - 1];
}

for (int i = (floor((weights.size() - 1)/2) - 1); i >= 0; i--){
  tws[i] += (tws[2 * i + 1]) + (tws[2 * i + 2]);
}
for(int i = 0; i < num; i++){
  gas = as<double>(runif(1)) * tws[0];
  k = 0;
  while(gas > weights[k]){
    gas -= weights[k];
    k = 2 * k + 1;
    if(gas > tws[k]){
      gas -= tws[k];
      k += 1;
    }
  }
  wgh = weights[k];
  out[i] = x[k];
  weights[k] = 0;
  while(k > 0){
    tws[k] -= wgh;
    k = floor((k - 1) / 2);
  }
  tws[0] -= wgh;
}
return out;
'

fun <- cxxfunction(signature(all = "numeric", n = "integer", w = "numeric"),
                   src, plugin = "Rcpp")

现在一些结果:

times1 <- ldply(
  1:6,
  function(i) {
    n <- 1024 * (2 ** i)
    p <- runif(2 * n) # Uniform distribution
    p <- p/sum(p)
    data.frame(
      n=n,
      user=c(system.time(sample.int.test(n, p), gcFirst=T)['user.self'],
             system.time(weighted_Random_Sample(1:(2*n), p, n), gcFirst=T)['user.self'],
             system.time(fun(1:(2*n), n, p), gcFirst=T)['user.self'],
             system.time(sample.int.rej(2*n, n, p), gcFirst=T)['user.self'],
             system.time(fastSampleReject(1:(2*n), n, p), gcFirst=T)['user.self'],
             system.time(fastSample1980(1:(2*n), n, p), gcFirst=T)['user.self']),
      id=c("Base", "Reservoir", "Rcpp", "Rejection", "Rejection simple", "1980"))
  },
  .progress='text'
)


times2 <- ldply(
  1:6,
  function(i) {
    n <- 1024 * (2 ** i)
    p <- runif(2 * n - 1)
    p <- p/sum(p) 
    p <- c(0.999, 0.001 * p) # Special case
    data.frame(
      n=n,
      user=c(system.time(sample.int.test(n, p), gcFirst=T)['user.self'],
             system.time(weighted_Random_Sample(1:(2*n), p, n), gcFirst=T)['user.self'],
             system.time(fun(1:(2*n), n, p), gcFirst=T)['user.self'],
             system.time(sample.int.rej(2*n, n, p), gcFirst=T)['user.self'],
             system.time(fastSampleReject(1:(2*n), n, p), gcFirst=T)['user.self'],
             system.time(fastSample1980(1:(2*n), n, p), gcFirst=T)['user.self']),
      id=c("Base", "Reservoir", "Rcpp", "Rejection", "Rejection simple", "1980"))
  },
  .progress='text'
)

在此处输入图像描述

在此处输入图像描述

arrange(times1, id)
       n  user               id
1   2048  0.53             1980
2   4096  0.94             1980
3   8192  2.00             1980
4  16384  4.32             1980
5  32768  9.10             1980
6  65536 21.32             1980
7   2048  0.02             Base
8   4096  0.05             Base
9   8192  0.18             Base
10 16384  0.75             Base
11 32768  2.99             Base
12 65536 12.23             Base
13  2048  0.00             Rcpp
14  4096  0.01             Rcpp
15  8192  0.03             Rcpp
16 16384  0.07             Rcpp
17 32768  0.14             Rcpp
18 65536  0.31             Rcpp
19  2048  0.00        Rejection
20  4096  0.00        Rejection
21  8192  0.00        Rejection
22 16384  0.02        Rejection
23 32768  0.02        Rejection
24 65536  0.03        Rejection
25  2048  0.00 Rejection simple
26  4096  0.01 Rejection simple
27  8192  0.00 Rejection simple
28 16384  0.01 Rejection simple
29 32768  0.00 Rejection simple
30 65536  0.05 Rejection simple
31  2048  0.00        Reservoir
32  4096  0.00        Reservoir
33  8192  0.00        Reservoir
34 16384  0.02        Reservoir
35 32768  0.03        Reservoir
36 65536  0.05        Reservoir

arrange(times2, id)
       n  user               id
1   2048  0.43             1980
2   4096  0.93             1980
3   8192  2.00             1980
4  16384  4.36             1980
5  32768  9.08             1980
6  65536 19.34             1980
7   2048  0.01             Base
8   4096  0.04             Base
9   8192  0.18             Base
10 16384  0.75             Base
11 32768  3.11             Base
12 65536 12.04             Base
13  2048  0.01             Rcpp
14  4096  0.02             Rcpp
15  8192  0.03             Rcpp
16 16384  0.08             Rcpp
17 32768  0.15             Rcpp
18 65536  0.33             Rcpp
19  2048  0.00        Rejection
20  4096  0.00        Rejection
21  8192  0.02        Rejection
22 16384  0.02        Rejection
23 32768  0.05        Rejection
24 65536  0.08        Rejection
25  2048  1.43 Rejection simple
26  4096  2.87 Rejection simple
27  8192  6.17 Rejection simple
28 16384 13.68 Rejection simple
29 32768 29.74 Rejection simple
30 65536 73.32 Rejection simple
31  2048  0.00        Reservoir
32  4096  0.00        Reservoir
33  8192  0.02        Reservoir
34 16384  0.02        Reservoir
35 32768  0.02        Reservoir
36 65536  0.04        Reservoir

显然我们可以拒绝函数1980,因为它比Base这两种情况都慢。Rejection simple当第二种情况下只有一个概率为 0.999 时,也会遇到麻烦。

所以剩下Rejection, Rcpp, Reservoir. 最后一步是检查值本身是否正确。为了确定它们,我们将使用它们sample作为基准(也是为了消除p由于没有替换的抽样而不必一致的概率的混淆)。

p <- c(995/1000, rep(1/1000, 5))
n <- 100000

system.time(print(table(replicate(sample(1:6, 3, repl = FALSE, prob = p), n = n))/n))
      1       2       3       4       5       6 
1.00000 0.39992 0.39886 0.40088 0.39711 0.40323  # Benchmark
   user  system elapsed 
   1.90    0.00    2.03 

system.time(print(table(replicate(sample.int.rej(2*3, 3, p), n = n))/n))
      1       2       3       4       5       6 
1.00000 0.40007 0.40099 0.39962 0.40153 0.39779 
   user  system elapsed 
  76.02    0.03   77.49 # Slow

system.time(print(table(replicate(weighted_Random_Sample(1:6, p, 3), n = n))/n))
      1       2       3       4       5       6 
1.00000 0.49535 0.41484 0.36432 0.36338 0.36211  # Incorrect
   user  system elapsed 
   3.64    0.01    3.67 

system.time(print(table(replicate(fun(1:6, 3, p), n = n))/n))
      1       2       3       4       5       6 
1.00000 0.39876 0.40031 0.40219 0.40039 0.39835 
   user  system elapsed 
   4.41    0.02    4.47 

注意这里的几件事。由于某种原因weighted_Random_Sample返回不正确的值(我根本没有研究过,但假设均匀分布它可以正常工作)。sample.int.rej重复采样很慢。

总之,Rcpp在重复采样的情况下,这似乎是最佳选择,而在sample.int.rej其他情况下速度更快,也更易于使用。

于 2013-03-04T20:45:20.987 回答
20

我决定深入研究其中的一些评论,发现Efraimidis 和 Spirakis的论文很吸引人(感谢 @Hemmo 找到参考)。论文中的总体思路是这样的:通过生成一个随机统一数并将其提高到每个项目权重的 1 次方来创建一个密钥。然后,您只需将最高的键值作为样本。这效果很好!

weighted_Random_Sample <- function(
    .data,
    .weights,
    .n
    ){

    key <- runif(length(.data)) ^ (1 / .weights)
    return(.data[order(key, decreasing=TRUE)][1:.n])
}

如果将 '.n' 设置为 '.data' 的长度(应该始终是 '.weights' 的长度),这实际上是一个加权的储层置换,但该方法适用于采样和置换。

更新:我可能应该提到上述函数期望权重大于零。否则key <- runif(length(.data)) ^ (1 / .weights)将无法正确订购。


只是为了好玩,我还使用了 OP 中的测试场景来比较这两个功能。

set.seed(1)

times_WRS <- ldply(
1:7,
function(i) {
    n <- 1024 * (2 ** i)
    p <- runif(2 * n)
    n_Set <- 1:(2 * n)
    data.frame(
      n=n,
      user=system.time(weighted_Random_Sample(n_Set, p, n), gcFirst=T)['user.self'])
  },
  .progress='text'
)

sample.int.test <- function(n, p) {
sample.int(2 * n, n, replace=F, prob=p); NULL }

times_sample.int <- ldply(
  1:7,
  function(i) {
    n <- 1024 * (2 ** i)
    p <- runif(2 * n)
    data.frame(
      n=n,
      user=system.time(sample.int.test(n, p), gcFirst=T)['user.self'])
  },
  .progress='text'
)

times_WRS$group <- "WRS"
times_sample.int$group <- "sample.int"
library(ggplot2)

ggplot(rbind(times_WRS, times_sample.int) , aes(x=n, y=user/n, col=group)) + geom_point() + scale_x_log10() +  ylab('Time per unit (s)')

以下是时间:

times_WRS
#        n user
# 1   2048 0.00
# 2   4096 0.01
# 3   8192 0.00
# 4  16384 0.01
# 5  32768 0.03
# 6  65536 0.06
# 7 131072 0.16

times_sample.int
#        n  user
# 1   2048  0.02
# 2   4096  0.05
# 3   8192  0.14
# 4  16384  0.58
# 5  32768  2.33
# 6  65536  9.23
# 7 131072 37.79

性能比较

于 2013-03-04T15:30:55.250 回答
3

让我介绍一下我自己的一种基于rejection sampling with replacement的更快方法的实现。这个想法是这样的:

  • 生成一个比请求大小“有点”大的替换样本

  • 丢弃重复的值

  • 如果没有绘制足够的值,则使用adjusted和n参数 递归调用相同的过程sizeprob

  • 将返回的索引重新映射到原始索引

我们需要抽取多大的样本?假设均匀分布,结果是在N 个总值中看到 x 个唯一值的预期试验次数。它是两个谐波数(H_n 和 H_{n - size})的差。前几个谐波数列在表格中,否则使用使用自然对数的近似值。(这只是一个大概的数字,这里不需要太精确。)现在,对于非均匀分布,预期要抽取的项目数只能更大,所以我们不会抽取太多样本。此外,抽取的样本数量受到人口规模两倍的限制——我假设进行一些递归调用比抽样到 O(n ln n) 个项目要快。

代码可在 中例程的 R 包wrswoRsample.int.rej找到sample_int_rej.R。安装:

library(devtools)
install_github('wrswoR', 'muelleki')

它似乎“足够快”地工作,但是尚未进行正式的运行时测试。此外,该软件包仅在 Ubuntu 中进行了测试。感谢您的反馈。

于 2013-03-04T15:02:43.920 回答