下面是一个模算数 Num 实例的实现,它以Data.Fixed
.
我想编写一个替代实现,fromRational
它看起来像:
fromRational r = case invertMod (denominator r) theModulus of
Just inv -> normalize $ (numerator r) * inv
Nothing -> error "..."
但我不知道我会用什么theModulus
。与其他类型类函数不同,我没有Modular a
可以调用的类型值modulus
。
{-# LANGUAGE NoMonomorphismRestriction #-}
import Math.NumberTheory.Moduli (invertMod)
import Data.Ratio (numerator, denominator)
class HasModulus a where
modulus :: p a -> Integer
withType :: (p a -> f a) -> f a
withType foo = foo undefined
withModulus :: (HasModulus a) => (Integer -> f a) -> f a
withModulus foo = withType (foo . modulus)
newtype Modular a = M Integer
normalize :: HasModulus a => Integer -> Modular a
normalize x = withModulus $ \m -> M (x `mod` m)
instance (HasModulus a) => Num (Modular a) where
(M a) + (M b) = normalize (a+b)
(M a) - (M b) = normalize (a-b)
(M a) * (M b) = normalize (a*b)
negate (M a) = normalize (-a)
abs = id
signum _ = fromInteger 1
fromInteger = normalize
instance (HasModulus a) => Fractional (Modular a) where
recip ma@(M a) = case invertMod a (modulus ma) of
Just inv -> normalize $ inv
Nothing -> error "divide by zero error"
ma / mb = ma * (recip mb)
fromRational r = (fromInteger $ numerator r) / (fromInteger $ denominator r)
instance (HasModulus a) => Show (Modular a) where
show mx@(M x) = (show x) ++ " mod " ++ (show $ modulus mx)
data M5 = M5
data M7 = M7
instance HasModulus M5 where modulus _ = 5
instance HasModulus M7 where modulus _ = 7
bar = 1 / 3
main = do print $ (bar :: Modular M5)
print $ (bar :: Modular M7)