我有这个数据。我想计算 R 中的邻接矩阵。
我怎样才能做到这一点?V1,V2,V3 是列。V1 和 V2 是节点,W3 是从 V1 到 V2 的权重。该数据的方向很重要。在计算了邻接矩阵之后,我想用 R 语言计算这些顶点之间的最短路径。
我怎样才能做到这一点?
V1 V2 V3
[1] 164885 431072 3
[2] 164885 164885 24
[3] 431072 431072 5
这是一个更简单的解决方案,不需要reshape()
. 我们只是直接从您拥有的数据框中创建一个 igraph 图。如果您真的需要邻接矩阵,您仍然可以通过以下方式获得它get.adjacency()
:
library(igraph)
## load data
df <- read.table(header=T, stringsAsFactors=F, text=
" V1 V2 V3
164885 431072 3
164885 164885 24
431072 431072 5")
## create graph
colnames(df) <- c("from", "to", "weight")
g <- graph.data.frame(df)
g
# IGRAPH DNW- 2 3 --
# + attr: name (v/c), weight (e/n)
## get shortest path lengths
shortest.paths(g, mode="out")
# 164885 431072
# 164885 0 3
# 431072 Inf 0
## get the actual shortest path
get.shortest.paths(g, from="164885", to="431072")
# [[1]]
# [1] 1 2
这至少应该让你开始。我能想到的最简单的方法adjacency matrix
是这样做,然后使用如下方式reshape
构建图表:igraph
# load data
df <- read.table(header=T, stringsAsFactors=F, text=" V1 V2 V3
164885 431072 3
164885 164885 24
431072 431072 5")
> df
# V1 V2 V3
# 1 164885 431072 3
# 2 164885 164885 24
# 3 431072 431072 5
# using reshape2's dcast to reshape the matrix and set row.names accordingly
require(reshape2)
m <- as.matrix(dcast(df, V1 ~ V2, value.var = "V3", fill=0))[,2:3]
row.names(m) <- colnames(m)
> m
# 164885 431072
# 164885 24 3
# 431072 0 5
# load igraph and construct graph
require(igraph)
g <- graph.adjacency(m, mode="directed", weighted=TRUE, diag=TRUE)
> E(g)$weight # simple check
# [1] 24 3 5
# get adjacency
get.adjacency(g)
# 2 x 2 sparse Matrix of class "dgCMatrix"
# 164885 431072
# 164885 1 1
# 431072 . 1
# get shortest paths from a vertex to all other vertices
shortest.paths(g, mode="out") # check out mode = "all" and "in"
# 164885 431072
# 164885 0 3
# 431072 Inf 0