DirectXMath 专为 32 位浮点数学而设计。您看到浮点错误升级。这是 XMVector3AngleBetweenVectors 的定义。
inline XMVECTOR XM_CALLCONV XMVector3AngleBetweenVectors(FXMVECTOR V1, FXMVECTOR V2)
{
XMVECTOR L1 = XMVector3ReciprocalLength(V1);
XMVECTOR L2 = XMVector3ReciprocalLength(V2);
XMVECTOR Dot = XMVector3Dot(V1, V2);
L1 = XMVectorMultiply(L1, L2);
XMVECTOR CosAngle = XMVectorMultiply(Dot, L1);
CosAngle = XMVectorClamp(CosAngle, g_XMNegativeOne.v, g_XMOne.v);
return XMVectorACos(CosAngle);
}
在您的第一个示例中,CosAngle 等于 1.000000000
在您的第二个示例中,CosAngle 等于 0.999999940
XMVectorACos(0.999999940) = 0.000345266977
这个大误差来自 ACos 的多项式逼近。一般来说,您应该尽可能避免使用三角逆。他们又慢又吵。这是定义,因此您可以了解它的大小。
inline XMVECTOR XM_CALLCONV XMVectorACos (FXMVECTOR V)
{
__m128 nonnegative = _mm_cmpge_ps(V, g_XMZero);
__m128 mvalue = _mm_sub_ps(g_XMZero, V);
__m128 x = _mm_max_ps(V, mvalue); // |V|
// Compute (1-|V|), clamp to zero to avoid sqrt of negative number.
__m128 oneMValue = _mm_sub_ps(g_XMOne, x);
__m128 clampOneMValue = _mm_max_ps(g_XMZero, oneMValue);
__m128 root = _mm_sqrt_ps(clampOneMValue); // sqrt(1-|V|)
// Compute polynomial approximation
const XMVECTOR AC1 = g_XMArcCoefficients1;
XMVECTOR vConstants = XM_PERMUTE_PS( AC1, _MM_SHUFFLE(3, 3, 3, 3) );
__m128 t0 = _mm_mul_ps(vConstants, x);
vConstants = XM_PERMUTE_PS( AC1, _MM_SHUFFLE(2, 2, 2, 2) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, x);
vConstants = XM_PERMUTE_PS( AC1, _MM_SHUFFLE(1, 1, 1, 1) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, x);
vConstants = XM_PERMUTE_PS( AC1, _MM_SHUFFLE(0, 0, 0, 0) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, x);
const XMVECTOR AC0 = g_XMArcCoefficients0;
vConstants = XM_PERMUTE_PS( AC0, _MM_SHUFFLE(3, 3, 3, 3) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, x);
vConstants = XM_PERMUTE_PS( AC0, _MM_SHUFFLE(2, 2, 2, 2) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, x);
vConstants = XM_PERMUTE_PS( AC0, _MM_SHUFFLE(1, 1, 1, 1) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, x);
vConstants = XM_PERMUTE_PS( AC0, _MM_SHUFFLE(0, 0, 0, 0) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, root);
__m128 t1 = _mm_sub_ps(g_XMPi, t0);
t0 = _mm_and_ps(nonnegative, t0);
t1 = _mm_andnot_ps(nonnegative, t1);
t0 = _mm_or_ps(t0, t1);
return t0;
}