16

我有一个多天的日内日志返回系列,我想将其下采样到每日 ohlc。我可以做类似的事情

hi = series.resample('B', how=lambda x: np.max(np.cumsum()))
low = series.resample('B', how=lambda x: np.min(np.cumsum())) 

但是每次调用计算 cumsum 似乎效率低下。有没有办法先计算 cumsums 然后将 'ohcl' 应用于数据?

1999-08-09 12:30:00-04:00   -0.000486
1999-08-09 12:31:00-04:00   -0.000606
1999-08-09 12:32:00-04:00   -0.000120
1999-08-09 12:33:00-04:00   -0.000037
1999-08-09 12:34:00-04:00   -0.000337
1999-08-09 12:35:00-04:00    0.000100
1999-08-09 12:36:00-04:00    0.000219
1999-08-09 12:37:00-04:00    0.000285
1999-08-09 12:38:00-04:00   -0.000981
1999-08-09 12:39:00-04:00   -0.000487
1999-08-09 12:40:00-04:00    0.000476
1999-08-09 12:41:00-04:00    0.000362
1999-08-09 12:42:00-04:00   -0.000038
1999-08-09 12:43:00-04:00   -0.000310
1999-08-09 12:44:00-04:00   -0.000337
...
1999-09-28 06:45:00-04:00    0.000000
1999-09-28 06:46:00-04:00    0.000000
1999-09-28 06:47:00-04:00    0.000000
1999-09-28 06:48:00-04:00    0.000102
1999-09-28 06:49:00-04:00   -0.000068
1999-09-28 06:50:00-04:00    0.000136
1999-09-28 06:51:00-04:00    0.000566
1999-09-28 06:52:00-04:00    0.000469
1999-09-28 06:53:00-04:00    0.000000
1999-09-28 06:54:00-04:00    0.000000
1999-09-28 06:55:00-04:00    0.000000
1999-09-28 06:56:00-04:00    0.000000
1999-09-28 06:57:00-04:00    0.000000
1999-09-28 06:58:00-04:00    0.000000
1999-09-28 06:59:00-04:00    0.000000
4

2 回答 2

21
df.groupby([df.index.year, df.index.month, df.index.day]).transform(np.cumsum).resample('B', how='ohlc')

我想这可能是我想要的,但我必须测试。

编辑:在 zelazny7 的回复之后:

df.groupby(pd.TimeGrouper('D')).transform(np.cumsum).resample('D', how='ohlc')

工作,也比我以前的解决方案更有效率。

更新

pd.TimeGrouper('D') 自pandas v0.21.0起已弃用。

改用pd.Grouper()

df.groupby(pd.Grouper(freq='D')).transform(np.cumsum).resample('D', how='ohlc')
于 2013-02-01T13:12:35.537 回答
5

我无法让您的重新采样建议起作用。你有运气吗?这是一种在工作日级别聚合数据并一次性计算 OHLC 统计数据的方法:

from io import BytesIO
from pandas import *

text = """1999-08-09 12:30:00-04:00   -0.000486
1999-08-09 12:31:00-04:00   -0.000606
1999-08-09 12:32:00-04:00   -0.000120
1999-08-09 12:33:00-04:00   -0.000037
1999-08-09 12:34:00-04:00   -0.000337
1999-08-09 12:35:00-04:00    0.000100
1999-08-09 12:36:00-04:00    0.000219
1999-08-09 12:37:00-04:00    0.000285
1999-08-09 12:38:00-04:00   -0.000981
1999-08-09 12:39:00-04:00   -0.000487
1999-08-09 12:40:00-04:00    0.000476
1999-08-09 12:41:00-04:00    0.000362
1999-08-09 12:42:00-04:00   -0.000038
1999-08-09 12:43:00-04:00   -0.000310
1999-08-09 12:44:00-04:00   -0.000337"""

df = read_csv(BytesIO(text), sep='\s+', parse_dates=[[0,1]], index_col=[0], header=None)

在这里,我创建了一个字典词典。外部键引用您要应用函数的列。内部键包含聚合函数的名称,内部值是您要应用的函数:

f = {2: {'O':'first',
         'H':'max',
         'L':'min',
         'C':'last'}}

df.groupby(TimeGrouper(freq='B')).agg(f)

Out:
                   2
                   H         C         L         O
1999-08-09  0.000476 -0.000337 -0.000981 -0.000486
于 2013-02-01T14:14:16.703 回答