6

我有一组向量作为 numpy 数组。我需要从由 2 个向量 v1 和 v2 定义的平面中获取每个平面的正交距离。我可以使用 Gram-Schmidt 过程轻松获得单个向量。有没有一种方法可以非常快速地处理许多向量,而无需遍历每个向量或使用 np.vectorize?

谢谢!

4

3 回答 3

4

您需要构造平面的单位法线:

在三个维度上,这很容易做到:

nhat=np.cross( v1, v2 )
nhat=nhat/np.sqrt( np.dot( nhat,nhat) )

然后用你的每个向量点这个;我假设是一个Nx3矩阵M

result=np.zeros( M.shape[0], dtype=M.dtype )
for idx in xrange( M.shape[0] ):
    result[idx]=np.abs(np.dot( nhat, M[idx,:] ))

所以这result[idx]就是idx'th向量到平面的距离。

于 2013-01-31T18:45:09.870 回答
4

实现@Jaime 答案的更明确的方法是,您可以明确说明投影运算符的构造:

def normalized(v):
    return v/np.sqrt( np.dot(v,v))
def ortho_proj_vec(v, uhat ):
    '''Returns the projection of the vector v  on the subspace
    orthogonal to uhat (which must be a unit vector) by subtracting off
    the appropriate multiple of uhat.
    i.e. dot( retval, uhat )==0
    '''
    return v-np.dot(v,uhat)*uhat

def ortho_proj_array( Varray, uhat ):
     ''' Compute the orhogonal projection for an entire array of vectors.
     @arg Varray:  is an array of vectors, each row is one vector
          (i.e. Varray.shape[1]==len(uhat)).
     @arg uhat: a unit vector
     @retval : an array (same shape as Varray), where each vector
               has had the component parallel to uhat removed.
               postcondition: np.dot( retval[i,:], uhat) ==0.0
               for all i. 
    ''' 
    return Varray-np.outer( np.dot( Varray, uhat), uhat )




# We need to ensure that the vectors defining the subspace are unit norm
v1hat=normalized( v1 )

# now to deal with v2, we need to project it into the subspace
# orhogonal to v1, and normalize it
v2hat=normalized( ortho_proj(v2, v1hat ) )
# TODO: if np.dot( normalized(v2), v1hat) ) is close to 1.0, we probably
# have an ill-conditioned system (the vectors are close to parallel)



# Act on each of your data vectors with the projection matrix,
# take the norm of the resulting vector.
result=np.zeros( M.shape[0], dtype=M.dtype )
for idx in xrange( M.shape[0] ):
    tmp=ortho_proj_vec( ortho_proj_vec(M[idx,:], v1hat), v2hat )             
    result[idx]=np.sqrt(np.dot(tmp,tmp))

 # The preceeding loop could be avoided via
 #tmp=orhto_proj_array( ortho_proj_array( M, v1hat), v2hat )
 #result=np.sum( tmp**2, axis=-1 )
 # but this results in many copies of matrices that are the same 
 # size as M, so, initially, I prefer the loop approach just on
 # a memory usage basis.

这实际上只是对 Gram-Schmidt 正交化过程的概括。请注意,在此过程结束时,我们有np.dot(v1hat, v1hat.T)==1, np.dot(v2hat,v2hat.T)==1, np.dot(v1hat, v2hat)==0(在数值精度范围内)

于 2013-02-01T21:51:51.073 回答
2

编辑我写的原始代码不能正常工作,所以我把它删除了。但是遵循相同的想法,下面解释,如果你花一些时间思考它,就不需要克莱默规则,代码可以简化如下:

def distance(v1, v2, u) :
    u = np.array(u, ndmin=2)
    v = np.vstack((v1, v2))
    vv = np.dot(v, v.T) # shape (2, 2)
    uv = np.dot(u, v.T) # shape (n ,2)
    ab = np.dot(np.linalg.inv(vv), uv.T) # shape(2, n)
    w = u - np.dot(ab.T, v)
    return np.sqrt(np.sum(w**2, axis=1)) # shape (n,)

为了确保它正常工作,我将 Dave 的代码打包到一个函数中,distance_3d并尝试了以下操作:

>>> d, n = 3, 1000
>>> v1, v2, u = np.random.rand(d), np.random.rand(d), np.random.rand(n, d)
>>> np.testing.assert_almost_equal(distance_3d(v1, v2, u), distance(v1, v2, u))

但当然它现在适用于任何d

>>> d, n = 1000, 3
>>> v1, v2, u = np.random.rand(d), np.random.rand(d), np.random.rand(n, d)
>>> distance(v1, v2, u)
array([ 10.57891286,  10.89765779,  10.75935644])

你必须分解你的向量,我们称之为u,在两个向量之和中,u = v + wv在平面内,因此可以分解为v = a * v1 + b * v2,而w垂直于平面,因此np.dot(w, v1) = np.dot(w, v2) = 0

如果你用 和 写并u = a * v1 + b * v2 + w取这个表达式的点积,你会得到两个有两个未知数的方程:v1v2

np.dot(u, v1) = a * np.dot(v1, v1) + b * np.dot(v2, v1)
np.dot(u, v2) = a * np.dot(v1, v2) + b * np.dot(v2, v2)

由于它只是一个 2x2 系统,我们可以使用Cramer 规则解决它:

uv1 = np.dot(u, v1)
uv2 = np.dot(u, v2)
v11 = np.dot(v1, v2)
v22 = np.dot(v2, v2)
v12 = np.dot(v1, v2)
v21 = np.dot(v2, v1)
det = v11 * v22 - v21 * v12
a = (uv1 * v22 - v21 * uv2) / det
b = (v11 * uv2 - uv1 * v12) / det

从这里,您可以获得:

w = u - v = u - a * v1 - b * v2

到平面的距离是 的模数w

于 2013-02-01T06:21:44.493 回答