我正在尝试在 Python 中实现 SVG 路径计算,但我遇到了 Arc 曲线的问题。
我认为问题在于从端点到中心参数化的转换,但我找不到问题。您可以在SVG 规范的 F6.5 部分中找到有关如何实现它的说明。我还查看了其他语言的实现,我也看不出它们有什么不同。
我的 Arc 对象实现在这里:
class Arc(object):
def __init__(self, start, radius, rotation, arc, sweep, end):
"""radius is complex, rotation is in degrees,
large and sweep are 1 or 0 (True/False also work)"""
self.start = start
self.radius = radius
self.rotation = rotation
self.arc = bool(arc)
self.sweep = bool(sweep)
self.end = end
self._parameterize()
def _parameterize(self):
# Conversion from endpoint to center parameterization
# http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
cosr = cos(radians(self.rotation))
sinr = sin(radians(self.rotation))
dx = (self.start.real - self.end.real) / 2
dy = (self.start.imag - self.end.imag) / 2
x1prim = cosr * dx + sinr * dy
x1prim_sq = x1prim * x1prim
y1prim = -sinr * dx + cosr * dy
y1prim_sq = y1prim * y1prim
rx = self.radius.real
rx_sq = rx * rx
ry = self.radius.imag
ry_sq = ry * ry
# Correct out of range radii
radius_check = (x1prim_sq / rx_sq) + (y1prim_sq / ry_sq)
if radius_check > 1:
rx *= sqrt(radius_check)
ry *= sqrt(radius_check)
rx_sq = rx * rx
ry_sq = ry * ry
t1 = rx_sq * y1prim_sq
t2 = ry_sq * x1prim_sq
c = sqrt((rx_sq * ry_sq - t1 - t2) / (t1 + t2))
if self.arc == self.sweep:
c = -c
cxprim = c * rx * y1prim / ry
cyprim = -c * ry * x1prim / rx
self.center = complex((cosr * cxprim - sinr * cyprim) +
((self.start.real + self.end.real) / 2),
(sinr * cxprim + cosr * cyprim) +
((self.start.imag + self.end.imag) / 2))
ux = (x1prim - cxprim) / rx
uy = (y1prim - cyprim) / ry
vx = (-x1prim - cxprim) / rx
vy = (-y1prim - cyprim) / ry
n = sqrt(ux * ux + uy * uy)
p = ux
theta = degrees(acos(p / n))
if uy > 0:
theta = -theta
self.theta = theta % 360
n = sqrt((ux * ux + uy * uy) * (vx * vx + vy * vy))
p = ux * vx + uy * vy
if p == 0:
delta = degrees(acos(0))
else:
delta = degrees(acos(p / n))
if (ux * vy - uy * vx) < 0:
delta = -delta
self.delta = delta % 360
if not self.sweep:
self.delta -= 360
def point(self, pos):
if self.arc == self.sweep:
angle = radians(self.theta - (self.delta * pos))
else:
angle = radians(self.delta + (self.delta * pos))
x = sin(angle) * self.radius.real + self.center.real
y = cos(angle) * self.radius.imag + self.center.imag
return complex(x, y)
您可以使用以下代码进行测试,该代码将使用 Turtle 模块绘制曲线。(最后的 raw_input() 只是为了在程序退出时屏幕不会消失)。
arc1 = Arc(0j, 100+50j, 0, 0, 0, 100+50j)
arc2 = Arc(0j, 100+50j, 0, 1, 0, 100+50j)
arc3 = Arc(0j, 100+50j, 0, 0, 1, 100+50j)
arc4 = Arc(0j, 100+50j, 0, 1, 1, 100+50j)
import turtle
t = turtle.Turtle()
t.penup()
t.goto(0, 0)
t.dot(5, 'red')
t.write('Start')
t.goto(100, 50)
t.dot(5, 'red')
t.write('End')
t.pencolor = t.color('blue')
for arc in (arc1, arc2, arc3, arc4):
t.penup()
p = arc.point(0)
t.goto(p.real, p.imag)
t.pendown()
for x in range(1,101):
p = arc.point(x*0.01)
t.goto(p.real, p.imag)
raw_input()
问题:
绘制的这四个弧中的每一个都应从起点绘制到终点。但是,它们是从错误的角度得出的。两条曲线从头到尾,两条曲线从 100,-50 到 0,0,而不是从 0,0 到 100, 50。
部分问题是实现说明为您提供了如何将表单端点转换为中心的公式,但没有解释它在几何上做了什么,所以我并不完全清楚每个步骤的作用。对此的解释也会有所帮助。