你如何解决这种类型的方程?
a *X + b * Y + c *Z = q
d *X + e * Y + f *Z = w
X *X + Y * Y + Z *Z = z
我们正在寻找 X,Y,Z。如果不是最后一行中的正方形,则可以将其作为典型的线性方程求解,例如使用 Dot Numerics 中的线性方程或编写高斯消元法。
但是我该如何解决这个问题?另外,您知道 .NET 中的任何库可以解决该等式吗?
这可以看作是 2 个平面和一个球体的一组方程。解决方案找到 2 个平面(一条线)的交点,然后找到该线与球体的交点。
可能有 0、1 或 2 个唯一解。
代码是 C,但我认为 OP 可以很容易地转换为 c#
// Eq1: a *X + b * Y + c *Z = q
// Eq2: d *X + e * Y + f *Z = w
// Eq3: X *X + Y * Y + Z *Z = z
typedef struct {
double x,y,z,s;
} plane_t;
typedef struct {
double x,y,z;
} point_t;
int Interection_PlanePlaneSphere(point_t XYZ[2], const plane_t *abc, const plane_t *def, double radius) {
// Find intersection of 2 planes
// V = abc cross def
point_t V; // This is really 3D vector, not a point
V.x = abc->y*def->z - abc->z*def->y;
V.y = abc->z*def->x - abc->x*def->z;
V.z = abc->x*def->y - abc->y*def->x;
// printf("V (%12g, %12g, %12g)\n", V.x, V.y, V.z);
// Assume both planes go through z plane, e.g. z = 0 and V.z != 0
// Code could be adapted to not depend on this assumption.
// abc->x*P.x + abc->y*P.y = abc->s
// def->x*P.x + def->y*P.y = def->s
double det = abc->x*def->y - abc->y*def->x;
// if Planes are parallel ...
// Code could be adapted to deal with special case where planes are coincident.
if (det == 0.0) return 0; //
point_t P;
P.x = ( abc->s*def->y - def->s*abc->y)/det;
P.y = (-abc->s*def->x + def->s*abc->x)/det;
P.z = 0.0;
// L(t) = P + V*t = intersection of the 2 planes
// printf("p (%12g, %12g, %12g)\n", P.x, P.y, P.z);
if (radius < 0) return 0; // bad sphere
// Find where L(t) is on the sphere, or |L(t)| = radius^2
// (P.x - V.x*t)^2 + (P.y - V.y*t)^2 + (P.z - V.z*t)^2 = radius^2
// (V.x^2 + V.y^2 + V.z^2)*t^2 - 2*(P.x*V.x + P.y*V.y + P.z*V.z) + (P.x^2 + P.y^2 + P.z^2) = radius^2;
// Solve quadratic
double a, b, c;
a = V.x*V.x + V.y*V.y + V.z*V.z;
b = -2*(P.x*V.x + P.y*V.y + P.z*V.z);
c = P.x*P.x + P.y*P.y + P.z*P.z - radius*radius;
// printf("abc (%12g, %12g, %12g)\n", a, b, c);
det = b*b - 4*a*c;
if (det < 0) return 0; // no solutions
det = sqrt(det);
double t;
t = (-b + det)/(2*a);
XYZ[0].x = P.x + t*V.x;
XYZ[0].y = P.y + t*V.y;
XYZ[0].z = P.z + t*V.z;
if (det == 0.0) return 1;
t = (-b - det)/(2*a);
XYZ[1].x = P.x + t*V.x;
XYZ[1].y = P.y + t*V.y;
XYZ[1].z = P.z + t*V.z;
return 2;
}
void Test() {
plane_t abcq = {2, -1, 1, 5};
plane_t defw = {1, 1, -1, 1};
double z = 100;
point_t XYZ[2];
int result = Interection_PlanePlaneSphere(XYZ, &abcq, &defw, sqrt(z));
printf("Result %d\n", result);
int i=0;
for (i=0; i<result; i++) {
printf("XYZ[%d] (%12g, %12g, %12g)\n", i, XYZ[i].x, XYZ[i].y, XYZ[i].z);
}
// Result 2
// XYZ[0] ( 2, 5.41014, 6.41014)
// XYZ[1] ( 2, -8.41014, -7.41014)
}