我正在使用的图片:
我正在尝试找到此图像中的每个框。结果不必是 100% 准确,只要找到的框的位置/大小大致正确即可。通过使用正方形检测示例,我设法获得了轮廓、边界框、角和框的中心。
我在这里遇到了一些问题:
- 为绘制线的内部和外部检测边界矩形。
- 检测到一些无关的角/中心。
- 我不确定如何将角/中心与相关的轮廓/边界框匹配,尤其是在考虑嵌套框时。
代码生成的图像:
这是我用来生成上面图像的代码:
import numpy as np
import cv2
from operator import itemgetter
from glob import glob
def angle_cos(p0, p1, p2):
d1, d2 = (p0-p1).astype('float'), (p2-p1).astype('float')
return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) )
def makebin(gray):
bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 5, 2)
return cv2.bitwise_not(bin)
def find_squares(img):
img = cv2.GaussianBlur(img, (11, 11), 0)
squares = []
points = []`
for gray in cv2.split(img):
bin = makebin(gray)
contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
corners = cv2.goodFeaturesToTrack(gray,len(contours)*4,0.2,15)
cv2.cornerSubPix(gray,corners,(6,6),(-1,-1),(cv2.TERM_CRITERIA_MAX_ITER | cv2.TERM_CRITERIA_EPS,10, 0.1))
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
if len(cnt) >= 4 and cv2.contourArea(cnt) > 200:
rect = cv2.boundingRect(cnt)
if rect not in squares:
squares.append(rect)
return squares, corners, contours
if __name__ == '__main__':
for fn in glob('../1 (Small).jpg'):
img = cv2.imread(fn)
squares, corners, contours = find_squares(img)
for p in corners:
cv2.circle(img, (p[0][0],p[0][3]), 3, (0,0,255),2)
squares = sorted(squares,key=itemgetter(1,0,2,3))
areas = []
moments = []
centers = []
for s in squares:
areas.append(s[2]*s[3])
cv2.rectangle( img, (s[0],s[1]),(s[0]+s[2],s[1]+s[3]),(0,255,0),1)
for c in contours:
moments.append(cv2.moments(np.array(c)))
for m in moments:
centers.append((int(m["m10"] // m["m00"]), int(m["m01"] // m["m00"])))
for cent in centers:
print cent
cv2.circle(img, (cent[0],cent[1]), 3, (0,255,0),2)
cv2.imshow('squares', img)
ch = 0xFF & cv2.waitKey()
if ch == 27:
break
cv2.destroyAllWindows()