2

我编写了一个 matlab 代码,用于使用霍夫变换检测灰度图像中的圆圈。我想尽可能减少运行时间。

我使用的边缘检测是自定义实现,但它的运行时间足够快,可以满足我的需要(大约 0.06 秒)。然而,瓶颈是其余的代码(总运行时间约为 6.35 秒)。顺便说一句,我使用 tic/toc 来计算运行时间。

这是代码,如果有人可以看一下,我将不胜感激:

function [ circles ] = findCircles(img)

 % set low and high bounds for radii values
    minR = 9; 
    [imgRows, imgCols] = size(img);
    maxR = ceil(min(imgRows, imgCols)/2);

    tic

    % run edge detection on image
    edgeImg = edgeDetect(img);    
    % get image size
    [rows, cols] = size(edgeImg); 
    % initialize accumulator
    houghAcc = zeros(rows, cols, maxR);
    % get all edge pixels from image
    edges = find(edgeImg);

    % find number of edge pixels
    edgeNum = size(edges);

    % scan each edge 
    for currEdge = 1 : edgeNum

        % get current edge x and y coordinations
        [edgeY edgeX] =  ind2sub([rows, cols], edges(currEdge));
        % scan each all possible radii
        for r = minR : maxR
            % go over all possible 2*pi*r circle centers
            for ang = 0 : 360
                t = (ang * pi) / 180;
                cX = round(edgeX - r*cos(t));
                cY = round(edgeY - r*sin(t));

                % check if center found is within image boundaries
                if ( cX < cols && cX > 0 && cY < rows && cY > 0 )
                    % found circle with (cX,cY) as center and r as radius
                    houghAcc(cY,cX,r)=houghAcc(cY,cX,r)+1; % increment matching counter

                end
            end
        end
    end

    % initialize circle list
    circles = []; 
    % intialize index for next found circle
    nextCircleIndx = 1;
    % get counter list dimensions
    [sizeX sizeY sizeR] = size(houghAcc);

    % get max counter value from hough counter matrix
    m = max(max(max(houghAcc))); 
    % calculate the minimal pixels that circle should have on perimeter
    t = m * 0.42; 

    % scan each found circle
    for cX = 1 : sizeX
        for cY = 1 : sizeY
            for r = 1 : sizeR

                % threshold values
                if houghAcc(cX, cY, r) > t
                    % circle is dominant enough, add it
                    circles(nextCircleIndx,:) = [cY , cX , r ,houghAcc(cX, cY, r)];
                    % increment index
                    nextCircleIndx = nextCircleIndx + 1;                    
                end

            end

        end
    end

     % sort counters in descending order (according to votes for each
    % circle)
    circles = flipud(sortrows(circles,4));

    % get circle list's size
    [rows cols] = size(circles);

    % scan circle list and check each pair of found circles 
    for i = 1 : rows-1
        % get first circle's details:
        % center
        cX1 = circles(i,1);
        cY1 = circles(i,2);
        % radius
        r1 = circles(i,3);
        %hough counter
        h1 = circles(i,4); 

        for j = i+1 : rows

            %get second circle's details:
            % center
            cX2 = circles(j,1);
            cY2 = circles(j,2);
            % radius
            r2 = circles(j,3);
            %hough counter
            h2 = circles(j,4); 


            % check if circle's actual difference is smaller than minimal
            % radius allowed
            if (cX1 - cX2)*(cX1 - cX2)+ (cY1 - cY2)*(cY1 - cY2) < (min(r1,r2))*(min(r1,r2))  && abs(r1 - r2) < minR
                % both circles are similar, sum their counters and merge
                % them to a circle with their avaraged values
                circles(i,:)=[(cX1+cX2)/2, (cY1+cY2)/2, (r1+r2)/2, h1+h2];
                % remove similar circle
                circles(j,:)=[0,0,0,0]; 
            end
        end

    end

    sortParam = 3; % 1: x-center, 2: y-center, 3: radius, 4: hough counter

    % sort the circles by the sort parameter, in descending order
    circles = flipud(sortrows(circles,sortParam));

    % get number of remained circles (= rows with non-zero values)
    len = length(find(circles~=0))/4;

    % remove duplicate similar circles from previus step
    circles(circles == 0) = [];

    % reshape circle list back to matrix form (previous step converted it
    % to a vector)
    circles = reshape(circles,len,4);

    % get max value according to sort parameter
    m = max(circles(:,sortParam));

    %get size of new circle list (with no duplicate circles)
    [newH newW] = size(circles);

    % thresholding: remove hough counters that are less than 30% from sort
    % parameter
    for  i= 1 : newH
        % check if current circle's sorting parameter's value is smaller
        % than threshold
        if  m - circles(i,sortParam) < m * 0.3 
    %         plot(circles(i,1),circles(i,2),'xr'); % DEBUG - show centers
        else
            % remove current circle
            circles(i,:)=[0,0,0,0];
        end
    end

    % find number of remaining circles after thresholding
    len = length(find(circles~=0))/4;
    % delete rows that match circles removed in thresholding
    circles(circles==0)=[];
    % reshape circle list back to matrix form
    circles=reshape(circles,len,4);

    % convert circle list's values to integers (hough counters are already
    % integers)
    circles = uint8(circles(:,1:3));
    toc
end

这段代码在哪里可以改进?谢谢你的帮助!

4

1 回答 1

1

对于for填充houghAcc矩阵的第一个块,我建议进行以下替换:

r = minR : maxR;    
t = ( 0 : 359 ) * pi / 180; % following HighPerformaceMark suggestion
rsin = bsxfun( @times, r', sin(t) ); %'
rcos = bsxfun( @times, r', cos(t) ); %'
[edgeY edgeX] = find( edgeImg );
cX = round( bsxfun( @minus, edgeX, permute( rcos, [3 1 2] ) ) );
cY = round( bsxfun( @minus, edgeY, permute( rsin, [3 1 2] ) ) );
R = permute( repmat( r', [ 1 size(cX,1) size(cX,3) ] ), [2 1 3] ); %' to index accHough
% select valid indices
sel = ( cX > 0 & cY > 0 & cY < rows & cX < cols );
houghAcc = accumarray( {cY(sel(:)), cX(sel(:)), R(sel(:))}, 1, [rows, cols, maxR] );

对于for扫描每个找到的圆圈的第二个块,我建议进行以下替换:

ind = find( houghAcc > t );
% sort the scores
sc = houghAcc(ind);
[sc si] = sort(  sc , 'descend' );
% convert linear indices to x,y,r
[cX cY r] = ind2sub( size( houghAcc ), ind(si) );
circles = [ cX(:) cY(:) r(:) sc(:) ];
于 2013-01-08T09:16:21.083 回答