4

我有这个问题,我必须通过向右或向下移动来找到从 A 点(总是左上角)到 B 点(总是右下角)的最短路径。听起来很容易,嗯?好吧,这里有一个问题:我只能移动我现在坐的瓷砖上显示的数字。让我举例说明:

2 5 1 2
9 2 5 3
3 3 1 1
4 8 2 7

在这个 4x4 网格中,最短路径需要 3 步,从左上角的 2 个节点向下走到 3,然后从那里 3 个节点向右走到 1,然后从 1 个节点向下走到目标。

[2] 5  1  2
 9  2  5  3
[3] 3  1 [1]
 4  8  2 [7]

如果不是最短路径,我也可以走这条路线:

[2] 5 [1][2]
 9  2  5  3
 3  3  1 [1]
 4  8  2 [7]

不幸的是,这需要4 个步骤,因此不符合我的兴趣。这应该会清除一些东西。现在关于输入。


用户输入网格如下:

5 4      // height and width
2 5 2 2  //
2 2 7 3  // the
3 1 2 2  // grid
4 8 2 7  //
1 1 1 1  //

家庭作业

我已经考虑过了,但没有比将输入的网格简化为未加权(或负权重)图并在其上运行类似 dijkstra 或 A* (或类似的东西)的更好的解决方案。嗯...这是我迷路的部分。我首先实现了一些东西(或者立即抛出一些东西)。它与 dijkstra 或 A* 或任何东西无关;只是直接的广度优先搜索。


编码

#include <iostream>
#include <vector>

struct Point;

typedef std::vector<int> vector_1D;
typedef std::vector< std::vector<int> > vector_2D;
typedef std::vector<Point> vector_point;

struct Point {
    int y, x;
    vector_point Parents;
    Point(int yPos = 0, int xPos = 0) : y(yPos), x(xPos) { }

    void operator << (const Point& point) { this->Parents.push_back(point); }
};

struct grid_t {
    int height, width;
    vector_2D tiles;

    grid_t() // construct the grid
    { 
        std::cin >> height >> width; // input grid height & width

        tiles.resize(height, vector_1D(width, 0)); // initialize grid tiles

        for(int i = 0; i < height; i++)     //
            for(int j = 0; j < width; j++)  // input each tile one at a time
                std::cin >> tiles[i][j];    // by looping through the grid
    }
};

void go_find_it(grid_t &grid)
{
    vector_point openList, closedList;
    Point previous_node; // the point is initialized as (y = 0, x = 0) if not told otherwise
    openList.push_back(previous_node); // (0, 0) is the first point we want to consult, of course

    do
    {
        closedList.push_back(openList.back()); // the tile we are at is good and checked. mark it so.
        openList.pop_back(); // we don't need this guy no more

        int y = closedList.back().y; // now we'll actually
        int x = closedList.back().x; // move to the new point

        int jump = grid.tiles[y][x]; // 'jump' is the number shown on the tile we're standing on.

        if(y + jump < grid.height) // if we're not going out of bounds
        { 
            openList.push_back(Point(y+jump, x)); // 
            openList.back() << Point(y, x); // push in the point we're at right now, since it's the parent node
        }
        if(x + jump < grid.width) // if we're not going out of bounds
        { 
            openList.push_back(Point(y, x+jump)); // push in the new promising point
            openList.back() << Point(y, x); // push in the point we're at right now, since it's the parent node
        }
    }
    while(openList.size() > 0); // when there are no new tiles to check, break out and return
}

int main()
{
    grid_t grid; // initialize grid

    go_find_it(grid); // basically a brute-force get-it-all-algorithm

    return 0;
}

我可能还应该指出,运行时间不能超过 1 秒,最大网格高度和宽度为 1000。所有的瓦片也是从 1 到 1000 的数字。

谢谢。


编辑代码

#include <iostream>
#include <vector>

struct Point;

typedef std::vector<int> vector_1D;
typedef std::vector< std::vector<int> > vector_2D;
typedef std::vector<Point> vector_point;

struct Point {
    int y, x, depth;
    vector_point Parents;
    Point(int yPos = 0, int xPos = 0, int dDepth = 0) : y(yPos), x(xPos), depth(dDepth) { }

    void operator << (const Point& point) { this->Parents.push_back(point); }
};

struct grid_t {
    int height, width;
    vector_2D tiles;

    grid_t() // construct the grid
    { 
        std::cin >> height >> width; // input grid height & width

        tiles.resize(height, vector_1D(width, 0)); // initialize grid tiles

        for(int i = 0; i < height; i++)     //
            for(int j = 0; j < width; j++)  // input each tile one at a time
                std::cin >> tiles[i][j];    // by looping through the grid
    }
};

int go_find_it(grid_t &grid)
{
    vector_point openList, closedList;
    Point previous_node(0, 0, 0); // the point is initialized as (y = 0, x = 0, depth = 0) if not told otherwise
    openList.push_back(previous_node); // (0, 0) is the first point we want to consult, of course

    int min_path = 1000000;

    do
    {
        closedList.push_back(openList[0]); // the tile we are at is good and checked. mark it so.
        openList.erase(openList.begin()); // we don't need this guy no more

        int y = closedList.back().y; // now we'll actually move to the new point
        int x = closedList.back().x; //
        int depth = closedList.back().depth; // the new depth

        if(y == grid.height-1 && x == grid.width-1) return depth; // the first path is the shortest one. return it

        int jump = grid.tiles[y][x]; // 'jump' is the number shown on the tile we're standing on.

        if(y + jump < grid.height) // if we're not going out of bounds
        { 
            openList.push_back(Point(y+jump, x, depth+1)); // 
            openList.back() << Point(y, x); // push in the point we're at right now, since it's the parent node
        }
        if(x + jump < grid.width) // if we're not going out of bounds
        { 
            openList.push_back(Point(y, x+jump, depth+1)); // push in the new promising point
            openList.back() << Point(y, x); // push in the point we're at right now, since it's the parent node
        }
    }
    while(openList.size() > 0); // when there are no new tiles to check, break out and return false

    return 0;
}

int main()
{
    grid_t grid; // initialize grid

    int min_path = go_find_it(grid); // basically a brute-force get-it-all-algorithm

    std::cout << min_path << std::endl;
    //system("pause");
    return 0;
}

程序现在打印正确的答案。现在我必须优化(运行时间太大了)。关于这个有什么提示吗?优化是我最讨厌的一件事。


答案

最后,解决方案似乎只包含少量代码。越少越好,因为我喜欢它。感谢 Dejan Jovanović 的出色解决方案

#include <iostream>
#include <vector>
#include <algorithm>

struct grid_t {
    int height, width;
    std::vector< std::vector<int> > tiles;
    std::vector< std::vector<int> > distance;

    grid_t() // construct the grid
    { 
        std::cin >> height >> width; // input grid height & width

        tiles.resize(height, std::vector<int>(width, 0)); // initialize grid tiles
        distance.resize(height, std::vector<int>(width, 1000000)); // initialize grid tiles

        for(int i = 0; i < height; i++)     //
            for(int j = 0; j < width; j++)  // input each tile one at a time
                std::cin >> tiles[i][j];    // by looping through the grid
    }
};

int main()
{
    grid_t grid; // initialize grid

    grid.distance[0][0] = 0;
    for(int i = 0; i < grid.height; i++) {
        for(int j = 0; j < grid.width; j++) {
            if(grid.distance[i][j] < 1000000) {
                int d = grid.tiles[i][j];
                if (i + d < grid.height) {
                    grid.distance[i+d][j] = std::min(grid.distance[i][j] + 1, grid.distance[i+d][j]);
                }
                if (j + d < grid.width) {
                    grid.distance[i][j+d] = std::min(grid.distance[i][j] + 1, grid.distance[i][j+d]);
                }
            }
        }
    }
    if(grid.distance[grid.height-1][grid.width-1] == 1000000) grid.distance[grid.height-1][grid.width-1] = 0;
    std::cout << grid.distance[grid.height-1][grid.width-1] << std::endl;
    //system("pause");
    return 0;
}
4

4 回答 4

3

需要构建图形,这可以通过使用一次扫描矩阵的动态规划轻松解决。

您可以在开始时将距离矩阵 D[i,j] 设置为 +inf,其中 D[0,0] = 0。在遍历矩阵时,您只需执行

if (D[i,j] < +inf) {
  int d = a[i, j];
  if (i + d < M) {
    D[i + d, j] = min(D[i,j] + 1, D[i + d, j]);
  }
  if (j + d < N) {
    D[i, j + d] = min(D[i,j] + 1, D[i, j + d]);
  }
}

最终的最小距离在 D[M -1, N-1] 中。如果你想重建路径,你可以保留一个单独的矩阵来标记最短路径的来源。

于 2013-01-04T17:15:14.933 回答
3

你想多了。:) 运行广度优先搜索。解决方案空间是一棵二叉树,其中每个节点都分支为“右”或“下”。从当前点生成下点和右点,将它们的坐标填充到队列中,重复直到完成。

不检查,是这样的:

queue = [{ x: 0, y: 0, path: [] }] # seed queue with starting point
p = nil
do
  raise NoSolutionException if p.empty? # solution space exhausted
  p = queue.pop # get next state from the back of the queue
  break if p.x == MAX_X - 1 && p.y == MAX_Y - 1 # we found final state
  l = grid[p.x][p.y] # leap length

  # add right state to the front of the queue
  queue.unshift({x: p.x + l, y: p.y, path: p.path + [p] }) if p.x + l <= MAX_X

  # add down state to the front of the queue
  queue.unshift({x: p.x, y: p.y + l, path: p.path + [p] }) if p.y + l <= MAX_Y
end
puts p.path

将丑化为 C++ 留给读者作为练习:p

于 2013-01-04T13:45:32.793 回答
2

建立一个未加权的有向图:

  1. NxM个顶点。在下文中, vertexv对应于 grid square v
  2. u从顶点到只有一条弧线,v如果您可以一次从方格跳到u方格v

现在应用从右上角顶点到左下角的最短路径算法。

最后,请注意您实际上并不需要构建图表。您可以简单地根据原始网格实现最短路径算法。

于 2013-01-04T13:53:46.473 回答
0

从蛮力方法开始让它工作,然后从那里优化。蛮力是直截了当的:递归地运行它。采取你的两个动作,递归那些,等等。收集所有有效答案并保留最小值。如果运行时间过长,那么可以通过多种方式进行优化。例如,一些移动可能是无效的(因为它们超出了网格的维度)并且可以被消除,等等。继续优化,直到最坏的情况下输入以所需的速度运行。

话虽如此,性能要求只有在您使用相同的系统和输入时才有意义,即使这样也有一些警告。大 O 表示法是一种更好的分析性能的方法,而且它可以为您指出一个算法并消除对分析的需要。

于 2013-01-04T13:50:22.707 回答