1

我知道在定点数学运算中使用位移乘法,例如,如果我需要将两个浮点值相乘,我应该将其乘以比例因子(例如在这种情况下为 20),然后,我应该将结果值乘以整数值,然后我应该将它们返回到数字的正常表示,应该再次按比例因子除以如何通过位移操作执行该操作?

基于这篇文章:5.4 定点算法

floatResShift我已经在下面尝试了这个代码示例,并且我期望结果floatResNormal是相同的,但它们是不同的,我做错了什么?:

        float mul1 = 18.579434f;
        float mul2 = 34.307951f;

        int shiftMul1 = (int)((2 ^ 32) * mul1);
        int shiftMul2 = (int)((2 ^ 32) * mul2);

        var resultMul = shiftMul1 * shiftMul2;
        float floatResShift = resultMul >> 32; // wrong value
        float floatResNormal = mul1 * mul2; //expected value

更新:

定点算术解释:

当 A = 2.5 和 B = 8.4 使用 32 位整数时,使用定点算法计算 A · B 的结果将涉及以下操作:

确定比例因子。这在很大程度上取决于可能会看到什么样的数字。由于此示例中的数字非常小,因此不太重要,并且可以接受 16 个小数位(小数点右侧的位)。比例因子为 f = 216 = 65536。这种格式称为 Q15.16(小数点左侧 15 位,右侧 16 位,符号位 1 位)。

使用普通整数乘法将 Ai 和 Bi 相乘。Ri = Ai · Bi = 163840 · 550502 = 90194247680。如此大的数字的原因是Ai和Bi都被缩放为我们的Q15.16格式,所以乘法得到的数字本质上是(A·f)· (B·f) = A·B·f2。

为了将我们的结果恢复为 Q15.16 格式,因此必须将结果除以比例因子。这也可以使用位移算法来完成,但为了简单起见,这里使用除法。Ri/f = 90194247680/65536 = 1376255 这是我们在 Q15.16 格式中的结果

要将数字转换回正常的实数,只需将其转换为所需的格式并再次除以比例因子,因此:1376255.0/65536.0 = 20.999985,接近预期的数字 21。

使用比例因子缩放数字。在二进制算术中,这可以使用位移来完成,但为简单起见,我们将使用比例因子的乘法。Ai = A·f = 2.5·65536 = 163840 和 B·f = 8.4·65536 = 550502.4 然后将其截断为整数,因此 Bi = 550502。

要将数字转换回正常的实数,只需将其转换为所需的格式并再次除以比例因子,因此:1376255.0/65536.0 = 20.999985,接近预期的数字 21。

如何在上面的评论中进行相同的操作,但要使用位移位。并且在点之后具有很大的浮点值

我试过上面的代码,但没有运气。

例如,我需要将两个值 18.579434f 和 34.307951f 相乘,但使用定点算法。

更新:

我用较小的比例因子尝试过这个,但没有运气。

解决方案:

也许我没有清楚地解释这个问题,但我解决了这个问题,我找到了解决方案:

谢谢大家,问题已经结束,这里是定点乘法的完整代码:

    float mul1 = 18.579434f;
    float mul2 = 34.307951f;

    int scaleFactor = (int) Math.Pow(2, 20);

    long shiftMul1 = (int)((scaleFactor) * mul1);
    long shiftMul2 = (int)((scaleFactor) * mul2);

    var resultMul = shiftMul1 * shiftMul2;
    float floatResShift = resultMul >> 40; 
    float floatResNormal = mul1 * mul2; // the result floatResNormal almost same as floatResShift
4

2 回答 2

1
var k = 20;
var k_2 = k/2;
var p = 1 << k;

float mul1 = 18.579434f;
float mul2 = 34.307951f;

int shiftMul1 = (int)(p * mul1);
int shiftMul2 = (int)(p * mul2);

//fixed point multiplication         
var resultMul = ((shiftMul1 >> k_2) * (shiftMul2 >> k_2));

float floatResShift = ((float)resultMul)/p;
float floatResNormal = mul1 * mul2; 

Console.WriteLine("{0} {1}", floatResNormal, floatResShift);

输出:

637,4223 637,4043
于 2012-12-24T19:32:21.180 回答
0

检查此代码

/*
Fixed Point Arithmatic structure and relevant methods. Simple fixed point structure included as well.

Created from information and code gathered here: http://stackoverflow.com/questions/605124/fixed-point-math-in-c

May be used for anything without permission.

To quote the original author (x4000 of stackoverflow.com):
"The accuracy of these functions as they are coded here is more than enough for my purposes, but if you need more you can increase the SHIFT AMOUNT on FInt.
Just be aware that if you do so, the constants on [trigonomic] functions will then need to be divided by 4096 and then multiplied by whatever your new SHIFT AMOUNT requires.
You're likely to run into some bugs if you do that and aren't careful, so be sure to run checks against the built-in Math functions to make sure that your results aren't
being put off by incorrectly adjusting a constant."

Code credit: x4000 of stackoverflow.com

Compiled into a usable source file by: Paul Bergeron

Date: 7/1/2009

More fixed point functions can be found written in Java here: http://home.comcast.net/~ohommes/MathFP/

*/

public struct FInt
{
    public long RawValue;
    public const int SHIFT_AMOUNT = 12; //12 is 4096

    public const long One = 1 << SHIFT_AMOUNT;
    public const int OneI = 1 << SHIFT_AMOUNT;
    public static FInt OneF = new FInt( 1, true );

    #region Constructors
    public FInt( long StartingRawValue, bool UseMultiple )
    {
        this.RawValue = StartingRawValue;
        if ( UseMultiple )
            this.RawValue = this.RawValue << SHIFT_AMOUNT;
    }
    public FInt( double DoubleValue )
    {
        DoubleValue *= (double)One;
        this.RawValue = (int)Math.Round( DoubleValue );
    }
    #endregion

    public int IntValue
    {
        get { return (int)( this.RawValue >> SHIFT_AMOUNT ); }
    }

    public int ToInt()
    {
        return (int)( this.RawValue >> SHIFT_AMOUNT );
    }

    public double ToDouble()
    {
        return (double)this.RawValue / (double)One;
    }

    public FInt Inverse
    {
        get { return new FInt( -this.RawValue, false ); }
    }

    #region FromParts
    /// <summary>
    /// Create a fixed-int number from parts.  For example, to create 1.5 pass in 1 and 500.
    /// </summary>
    /// <param name="PreDecimal">The number above the decimal.  For 1.5, this would be 1.</param>
    /// <param name="PostDecimal">The number below the decimal, to three digits.
    /// For 1.5, this would be 500. For 1.005, this would be 5.</param>
    /// <returns>A fixed-int representation of the number parts</returns>
    public static FInt FromParts( int PreDecimal, int PostDecimal )
    {
        FInt f = new FInt( PreDecimal );
        if ( PostDecimal != 0 )
            f.RawValue += ( new FInt( PostDecimal ) / 1000 ).RawValue;

        return f;
    }
    #endregion

    #region *
    public static FInt operator *( FInt one, FInt other )
    {
        return new FInt( ( one.RawValue * other.RawValue ) >> SHIFT_AMOUNT, false );
    }

    public static FInt operator *( FInt one, int multi )
    {
        return one * (FInt)multi;
    }

    public static FInt operator *( int multi, FInt one )
    {
        return one * (FInt)multi;
    }
    #endregion

    #region /
    public static FInt operator /( FInt one, FInt other )
    {
        return new FInt( ( one.RawValue << SHIFT_AMOUNT ) / ( other.RawValue  ), false );
    }

    public static FInt operator /( FInt one, int divisor )
    {
        return one / (FInt)divisor;
    }

    public static FInt operator /( int divisor, FInt one )
    {
        return (FInt)divisor / one;
    }
    #endregion

    #region %
    public static FInt operator %( FInt one, FInt other )
    {
        return new FInt( ( one.RawValue ) % ( other.RawValue ), false );
    }

    public static FInt operator %( FInt one, int divisor )
    {
        return one % (FInt)divisor;
    }

    public static FInt operator %( int divisor, FInt one )
    {
        return (FInt)divisor % one;
    }
    #endregion

    #region +
    public static FInt operator +( FInt one, FInt other )
    {
        return new FInt( one.RawValue + other.RawValue, false );
    }

    public static FInt operator +( FInt one, int other )
    {
        return one + (FInt)other;
    }

    public static FInt operator +( int other, FInt one )
    {
        return one + (FInt)other;
    }
    #endregion

    #region -
    public static FInt operator -( FInt one, FInt other )
    {
        return new FInt( one.RawValue - other.RawValue, false );
    }

    public static FInt operator -( FInt one, int other )
    {
        return one - (FInt)other;
    }

    public static FInt operator -( int other, FInt one )
    {
        return (FInt)other - one;
    }
    #endregion

    #region ==
    public static bool operator ==( FInt one, FInt other )
    {
        return one.RawValue == other.RawValue;
    }

    public static bool operator ==( FInt one, int other )
    {
        return one == (FInt)other;
    }

    public static bool operator ==( int other, FInt one )
    {
        return (FInt)other == one;
    }
    #endregion

    #region !=
    public static bool operator !=( FInt one, FInt other )
    {
        return one.RawValue != other.RawValue;
    }

    public static bool operator !=( FInt one, int other )
    {
        return one != (FInt)other;
    }

    public static bool operator !=( int other, FInt one )
    {
        return (FInt)other != one;
    }
    #endregion

    #region >=
    public static bool operator >=( FInt one, FInt other )
    {
        return one.RawValue >= other.RawValue;
    }

    public static bool operator >=( FInt one, int other )
    {
        return one >= (FInt)other;
    }

    public static bool operator >=( int other, FInt one )
    {
        return (FInt)other >= one;
    }
    #endregion

    #region <=
    public static bool operator <=( FInt one, FInt other )
    {
        return one.RawValue <= other.RawValue;
    }

    public static bool operator <=( FInt one, int other )
    {
        return one <= (FInt)other;
    }

    public static bool operator <=( int other, FInt one )
    {
        return (FInt)other <= one;
    }
    #endregion

    #region >
    public static bool operator >( FInt one, FInt other )
    {
        return one.RawValue > other.RawValue;
    }

    public static bool operator >( FInt one, int other )
    {
        return one > (FInt)other;
    }

    public static bool operator >( int other, FInt one )
    {
        return (FInt)other > one;
    }
    #endregion

    #region <
    public static bool operator <( FInt one, FInt other )
    {
        return one.RawValue < other.RawValue;
    }

    public static bool operator <( FInt one, int other )
    {
        return one < (FInt)other;
    }

    public static bool operator <( int other, FInt one )
    {
        return (FInt)other < one;
    }
    #endregion

    public static explicit operator int( FInt src )
    {
        return (int)( src.RawValue >> SHIFT_AMOUNT );
    }

    public static explicit operator FInt( int src )
    {
        return new FInt( src, true );
    }

    public static explicit operator FInt( long src )
    {
        return new FInt( src, true );
    }

    public static explicit operator FInt( ulong src )
    {
        return new FInt( (long)src, true );
    }

    public static FInt operator <<( FInt one, int Amount )
    {
        return new FInt( one.RawValue << Amount, false );
    }

    public static FInt operator >>( FInt one, int Amount )
    {
        return new FInt( one.RawValue >> Amount, false );
    }

    public override bool Equals( object obj )
    {
        if ( obj is FInt )
            return ( (FInt)obj ).RawValue == this.RawValue;
        else
            return false;
    }

    public override int GetHashCode()
    {
        return RawValue.GetHashCode();
    }

    public override string ToString()
    {
        return this.RawValue.ToString();
    }

    #region PI, DoublePI
    public static FInt PI = new FInt( 12868, false ); //PI x 2^12
    public static FInt TwoPIF = PI * 2; //radian equivalent of 260 degrees
    public static FInt PIOver180F = PI / (FInt)180; //PI / 180
    #endregion

    #region Sqrt
    public static FInt Sqrt( FInt f, int NumberOfIterations )
    {
        if ( f.RawValue < 0 ) //NaN in Math.Sqrt
            throw new ArithmeticException( "Input Error" );
        if ( f.RawValue == 0 )
            return (FInt)0;
        FInt k = f + FInt.OneF >> 1;
        for ( int i = 0; i < NumberOfIterations; i++ )
            k = ( k + ( f / k ) ) >> 1;

        if ( k.RawValue < 0 )
            throw new ArithmeticException( "Overflow" );
        else
            return k;
    }

    public static FInt Sqrt( FInt f )
    {
        byte numberOfIterations = 8;
        if ( f.RawValue > 0x64000 )
            numberOfIterations = 12;
        if ( f.RawValue > 0x3e8000 )
            numberOfIterations = 16;
        return Sqrt( f, numberOfIterations );
    }
    #endregion

    #region Sin
    public static FInt Sin( FInt i )
    {
        FInt j = (FInt)0;
        for ( ; i < 0; i += new FInt( 25736, false ) ) ;
        if ( i > new FInt( 25736, false ) )
            i %= new FInt( 25736, false );
        FInt k = ( i * new FInt( 10, false ) ) / new FInt( 714, false );
        if ( i != 0 && i != new FInt( 6434, false ) && i != new FInt( 12868, false ) &&
            i != new FInt( 19302, false ) && i != new FInt( 25736, false ) )
            j = ( i * new FInt( 100, false ) ) / new FInt( 714, false ) - k * new FInt( 10, false );
        if ( k <= new FInt( 90, false ) )
            return sin_lookup( k, j );
        if ( k <= new FInt( 180, false ) )
            return sin_lookup( new FInt( 180, false ) - k, j );
        if ( k <= new FInt( 270, false ) )
            return sin_lookup( k - new FInt( 180, false ), j ).Inverse;
        else
            return sin_lookup( new FInt( 360, false ) - k, j ).Inverse;
    }

    private static FInt sin_lookup( FInt i, FInt j )
    {
        if ( j > 0 && j < new FInt( 10, false ) && i < new FInt( 90, false ) )
            return new FInt( SIN_TABLE[i.RawValue], false ) +
                ( ( new FInt( SIN_TABLE[i.RawValue + 1], false ) - new FInt( SIN_TABLE[i.RawValue], false ) ) /
                new FInt( 10, false ) ) * j;
        else
            return new FInt( SIN_TABLE[i.RawValue], false );
    }

    private static int[] SIN_TABLE = {
        0, 71, 142, 214, 285, 357, 428, 499, 570, 641,
        711, 781, 851, 921, 990, 1060, 1128, 1197, 1265, 1333,
        1400, 1468, 1534, 1600, 1665, 1730, 1795, 1859, 1922, 1985,
        2048, 2109, 2170, 2230, 2290, 2349, 2407, 2464, 2521, 2577,
        2632, 2686, 2740, 2793, 2845, 2896, 2946, 2995, 3043, 3091,
        3137, 3183, 3227, 3271, 3313, 3355, 3395, 3434, 3473, 3510,
        3547, 3582, 3616, 3649, 3681, 3712, 3741, 3770, 3797, 3823,
        3849, 3872, 3895, 3917, 3937, 3956, 3974, 3991, 4006, 4020,
        4033, 4045, 4056, 4065, 4073, 4080, 4086, 4090, 4093, 4095,
        4096
    };
    #endregion

    private static FInt mul( FInt F1, FInt F2 )
    {
        return F1 * F2;
    }

    #region Cos, Tan, Asin
    public static FInt Cos( FInt i )
    {
        return Sin( i + new FInt( 6435, false ) );
    }

    public static FInt Tan( FInt i )
    {
        return Sin( i ) / Cos( i );
    }

    public static FInt Asin( FInt F )
    {
        bool isNegative = F < 0;
        F = Abs( F );

        if ( F > FInt.OneF )
            throw new ArithmeticException( "Bad Asin Input:" + F.ToDouble() );

        FInt f1 = mul( mul( mul( mul( new FInt( 145103 >> FInt.SHIFT_AMOUNT, false ), F ) -
            new FInt( 599880 >> FInt.SHIFT_AMOUNT, false ), F ) +
            new FInt( 1420468 >> FInt.SHIFT_AMOUNT, false ), F ) -
            new FInt( 3592413 >> FInt.SHIFT_AMOUNT, false ), F ) +
            new FInt( 26353447 >> FInt.SHIFT_AMOUNT, false );
        FInt f2 = PI / new FInt( 2, true ) - ( Sqrt( FInt.OneF - F ) * f1 );

        return isNegative ? f2.Inverse : f2;
    }
    #endregion

    #region ATan, ATan2
    public static FInt Atan( FInt F )
    {
        return Asin( F / Sqrt( FInt.OneF + ( F * F ) ) );
    }

    public static FInt Atan2( FInt F1, FInt F2 )
    {
        if ( F2.RawValue == 0 && F1.RawValue == 0 )
            return (FInt)0;

        FInt result = (FInt)0;
        if ( F2 > 0 )
            result = Atan( F1 / F2 );
        else if ( F2 < 0 )
        {
            if ( F1 >= 0 )
                result = ( PI - Atan( Abs( F1 / F2 ) ) );
            else
                result = ( PI - Atan( Abs( F1 / F2 ) ) ).Inverse;
        }
        else
            result = ( F1 >= 0 ? PI : PI.Inverse ) / new FInt( 2, true );

        return result;
    }
    #endregion

    #region Abs
    public static FInt Abs( FInt F )
    {
        if ( F < 0 )
            return F.Inverse;
        else
            return F;
    }
    #endregion

}

public struct FPoint
{
    public FInt X;
    public FInt Y;

    public FPoint( FInt X, FInt Y )
    {
        this.X = X;
        this.Y = Y;
    }

    public static FPoint FromPoint( Point p )
    {
        FPoint f = new FPoint();
        f.X = (FInt)p.X;
        f.Y = (FInt)p.Y;
        return f;
    }

    public static Point ToPoint( FPoint f )
    {
        return new Point( f.X.IntValue, f.Y.IntValue );
    }
}
于 2012-12-24T18:49:35.427 回答