0

我注意这个例子:http : //scikit-learn.org/stable/auto_examples/plot_digits_classification.html#example-plot-digits-classification-py 关于 scikit-learn python 库中的手写数字。

我想准备一个 3d 数组 (N * a* b),其中 N 是我的图像编号 (75),a* b 是图像的矩阵(如示例中的 8x8 形状)。我的问题是:我对每个图像都有不同形状的标志:(202, 230), (250, 322).. 并给我这个错误: ValueError: array dimensions must agree except for d_0 in this code:

#here there is the error:
grigiume = np.dstack(listagrigie)
print(grigiume.shape)
grigiume=np.rollaxis(grigiume,-1)
print(grigiume.shape)

有一种方法可以以标准尺寸(即 200x200)调整所有图像的大小,或者有一个 3d 数组与矩阵(a,b),其中 a != 来自 b 并且不要在此代码中给我一个错误:

data = digits.images.reshape((n_samples, -1))
classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2])

我的代码:

import os
import glob
import numpy as np
from numpy import array
listagrigie = []

path = 'resize2/'
for infile in glob.glob( os.path.join(path, '*.jpg') ):
    print("current file is: " + infile )
    colorato = cv2.imread(infile)
    grigiscala = cv2.cvtColor(colorato,cv2.COLOR_BGR2GRAY)
    listagrigie.append(grigiscala)

print(len(listagrigie))

#here there is the error:
grigiume = np.dstack(listagrigie)
print(grigiume.shape)
grigiume=np.rollaxis(grigiume,-1)
print(grigiume.shape)


#last step
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))

# Create a classifier: a support vector classifier
classifier = svm.SVC(gamma=0.001)

# We learn the digits on the first half of the digits
classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2])

# Now predict the value of the digit on the second half:
expected = digits.target[n_samples / 2:]
predicted = classifier.predict(data[n_samples / 2:])

print "Classification report for classifier %s:\n%s\n" % (
classifier, metrics.classification_report(expected, predicted))
print "Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)

for index, (image, prediction) in enumerate(
    zip(digits.images[n_samples / 2:], predicted)[:4]):
    pl.subplot(2, 4, index + 5)
    pl.axis('off')
    pl.imshow(image, cmap=pl.cm.gray_r, interpolation='nearest')
    pl.title('Prediction: %i' % prediction)

pl.show()
4

1 回答 1

1

您必须将所有图像的大小调整为固定大小。例如使用ImagePIL 或Pillow类:

from PIL import Image
image = Image.open("/path/to/input_image.jpeg")
image.thumbnail((200, 200), Image.ANTIALIAS)
image.save("/path/to/output_image.jpeg")

编辑:以上不起作用,请尝试resize

from PIL import Image
image = Image.open("/path/to/input_image.jpeg")
image = image.resize((200, 200), Image.ANTIALIAS)
image.save("/path/to/output_image.jpeg")

编辑 2:可能有一种方法可以保留纵横比并用黑色像素填充其余部分,但我不知道在几个 PIL 调用中该怎么做。不过,您可以使用PIL.Image.thumbnail和使用 numpy 进行填充。

于 2012-12-20T14:49:11.970 回答