我为列表开发了一个简单的 ExtensionMethod:
/// <summary>
/// Obtain all the combinations of the elements contained in a list
/// </summary>
/// <param name="subsetDimension">Subset Dimension</param>
/// <returns>IEnumerable containing all the differents subsets</returns>
public static IEnumerable<List<T>> CalcCombinations<T>(this List<T> list, int subsetDimension)
{
//First of all we will create a binary matrix. The dimension of a single row
//must be the dimension of list
//on which we are working (we need a 0 or a 1 for every single element) so row
//dimension is to obtain a row-length = list.count we have to
//populate the matrix with the first 2^list.Count binary numbers
int rowDimension = Convert.ToInt32(Math.Pow(2, list.Count));
//Now we start counting! We will fill our matrix with every number from 1
//(0 is meaningless) to rowDimension
//we are creating binary mask, hence the name
List<int[]> combinationMasks = new List<int[]>();
for (int i = 1; i < rowDimension; i++)
{
//I'll grab the binary rapresentation of the number
string binaryString = Convert.ToString(i, 2);
//I'll initialize an array of the apropriate dimension
int[] mask = new int[list.Count];
//Now, we have to convert our string in a array of 0 and 1, so first we
//obtain an array of int then we have to copy it inside our mask
//(which have the appropriate dimension), the Reverse()
//is used because of the behaviour of CopyTo()
binaryString.Select(x => x == '0' ? 0 : 1).Reverse().ToArray().CopyTo(mask, 0);
//Why should we keep masks of a dimension which isn't the one of the subset?
// We have to filter it then!
if (mask.Sum() == subsetDimension) combinationMasks.Add(mask);
}
//And now we apply the matrix to our list
foreach (int[] mask in combinationMasks)
{
List<T> temporaryList = new List<T>(list);
//Executes the cycle in reverse order to avoid index out of bound
for (int iter = mask.Length - 1; iter >= 0; iter--)
{
//Whenever a 0 is found the correspondent item is removed from the list
if (mask[iter] == 0)
temporaryList.RemoveAt(iter);
}
yield return temporaryList;
}
}
}
因此,考虑问题中的示例:
# Row Dimension of 4 (list.Count)
Binary Numbers to 2^4
# Binary Matrix
0 0 0 1 => skip
0 0 1 0 => skip
[...]
0 1 1 1 => added // Text2;Text3;Text4
[...]
1 0 1 1 => added // Text1;Text3;Text4
1 1 0 0 => skip
1 1 0 1 => added // Text1;Text2;Text4
1 1 1 0 => added // Text1;Text2;Text3
1 1 1 1 => skip
希望这可以帮助某人:)
如果您需要澄清或想要贡献,请随时添加答案或评论(哪个更合适)。