0

我想以Ax = b线性最小二乘方式求解线性系统,从而获得x. 矩阵Axb包含复数元素。

矩阵A的维数为nn并且A是一个也是下三角形的方阵。向量bx的长度为n。这个系统中的未知数与方程的数量一样多,但由于b是一个充满实际测量“数据”的向量,我怀疑最好以线性最小二乘法的方式执行此操作。

我正在寻找一种能够以 LLS 方式有效解决该系统的算法,可能使用稀疏矩阵数据结构来处理下三角矩阵A

也许已经有一个具有这种算法的 C/C++ 库?(由于代码优化,我怀疑最好使用库。)环顾 Eigen 矩阵库,似乎 SVD 分解可用于以 LLS 方式求解方程组(指向 Eigen 文档的链接)。但是,如何在 Eigen 中处理复数?

似乎 Eigen 库与 SVD 一起使用,然后将其用于 LLS 求解。


这是一个代码片段,演示了我想做的事情:

#include <iostream>
#include <Eigen/Dense>
#include <complex>

using namespace Eigen;

int main()

{

    // I would like to assign complex numbers
    // to A and b

    /*
    MatrixXcd A(4, 4);
    A(0,0) = std::complex(3,5);     // Compiler error occurs here
    A(1,0) = std::complex(4,4);
    A(1,1) = std::complex(5,3);
    A(2,0) = std::complex(2,2);
    A(2,1) = std::complex(3,3);
    A(2,2) = std::complex(4,4);
    A(3,0) = std::complex(5,3);
    A(3,1) = std::complex(2,4);
    A(3,2) = std::complex(4,3);
    A(3,3) = std::complex(2,4);
    */

    // The following code is taken from:
    // http://eigen.tuxfamily.org/dox/TutorialLinearAlgebra.html#TutorialLinAlgLeastsquares

    // This is what I want to do, but with complex numbers
    // and with A as lower triangular

    MatrixXf A = MatrixXf::Random(3, 3);
    std::cout << "Here is the matrix A:\n" << A << std::endl;
    VectorXf b = VectorXf::Random(3);
    std::cout << "Here is the right hand side b:\n" << b << std::endl;
    std::cout << "The least-squares solution is:\n"
    << A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b) << std::endl;
}// end

这是编译器错误:

 error: missing template arguments before '(' token

更新

这是一个更新的程序,展示了如何使用 Eigen 处理 LLS 求解。这段代码确实可以正确编译。

#include <iostream>

#include <Eigen/Dense>

#include <complex>


using namespace Eigen;


int main()

{

    MatrixXcd A(4, 4);
    A(0,0) = std::complex<double>(3,5);
    A(1,0) = std::complex<double>(4,4);
    A(1,1) = std::complex<double>(5,3);
    A(2,0) = std::complex<double>(2,2);
    A(2,1) = std::complex<double>(3,3);
    A(2,2) = std::complex<double>(4,4);
    A(3,0) = std::complex<double>(5,3);
    A(3,1) = std::complex<double>(2,4);
    A(3,2) = std::complex<double>(4,3);
    A(3,3) = std::complex<double>(2,4);

    VectorXcd b(4);
    b(0) = std::complex<double>(3,5);
    b(1) = std::complex<double>(2,0);
    b(2) = std::complex<double>(8,2);
    b(3) = std::complex<double>(4,8);

        std::cout << "Here is the A matrix:" << std::endl;
    std::cout << A << std::endl;

        std::cout << "Here is the b vector:" << std::endl;
        std::cout << b << std::endl;

    std::cout << "The least-squares solution is:\n"

        << A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b) << std::endl;


}// end
4

1 回答 1

2

因为std::complex是一个模板类,你用std::complex(1,1);编译器初始化不知道它是什么类型。

改为使用std::complex<double>(1, 1);

于 2012-12-06T16:07:45.763 回答