(在 More About => Algorithms 部分下)的文档给出了使用的确切算法。quantile
这是一些 python 代码,它为平面数组的单个分位数执行此操作,使用瓶颈进行部分排序:
import numpy as np
import botteleneck as bn
def quantile(a, prob):
"""
Estimates the prob'th quantile of the values in a data array.
Uses the algorithm of matlab's quantile(), namely:
- Remove any nan values
- Take the sorted data as the (.5/n), (1.5/n), ..., (1-.5/n) quantiles.
- Use linear interpolation for values between (.5/n) and (1 - .5/n).
- Use the minimum or maximum for quantiles outside that range.
See also: scipy.stats.mstats.mquantiles
"""
a = np.asanyarray(a)
a = a[np.logical_not(np.isnan(a))].ravel()
n = a.size
if prob >= 1 - .5/n:
return a.max()
elif prob <= .5 / n:
return a.min()
# find the two bounds we're interpreting between:
# that is, find i such that (i+.5) / n <= prob <= (i+1.5)/n
t = n * prob - .5
i = np.floor(t)
# partial sort so that the ith element is at position i, with bigger ones
# to the right and smaller to the left
a = bn.partsort(a, i)
if i == t: # did we luck out and get an integer index?
return a[i]
else:
# we'll linearly interpolate between this and the next index
smaller = a[i]
larger = a[i+1:].min()
if np.isinf(smaller):
return smaller # avoid inf - inf
return smaller + (larger - smaller) * (t - i)
我只做了单分位数的一维案例,因为这就是我所需要的。如果您想要几个分位数,则可能值得进行完整排序;要按轴执行并且知道您没有任何 nan,您需要做的就是在排序中添加一个轴参数并将线性插值位矢量化。使用 nans 在每个轴上进行操作会有点棘手。
这段代码给出:
>>> quantile([ 8.60789925e-05, 1.98989354e-05 , 1.68308882e-04, 1.69379370e-04], 0.8)
0.00016905822360000001
matlab代码给出了0.00016905822359999999
;不同的是3e-20
。(小于机器精度)