26

Sensor Fusion 视频看起来很棒,但没有代码: http ://www.youtube.com/watch?v=C7JQ7Rpwn2k&feature=player_detailpage#t=1315s

这是我的代码,它只使用加速度计和指南针。我还在 3 个方向值上使用了卡尔曼滤波器,但是这里显示的代码太多了。最终,这可以正常工作,但结果要么过于紧张,要么过于滞后,这取决于我对结果的处理方式以及我将过滤因子设为多低。

/** Just accelerometer and magnetic sensors */
public abstract class SensorsListener2
    implements
        SensorEventListener
{
    /** The lower this is, the greater the preference which is given to previous values. (slows change) */
    private static final float accelFilteringFactor = 0.1f;
    private static final float magFilteringFactor = 0.01f;

    public abstract boolean getIsLandscape();

    @Override
    public void onSensorChanged(SensorEvent event) {
        Sensor sensor = event.sensor;
        int type = sensor.getType();

        switch (type) {
            case Sensor.TYPE_MAGNETIC_FIELD:
                mags[0] = event.values[0] * magFilteringFactor + mags[0] * (1.0f - magFilteringFactor);
                mags[1] = event.values[1] * magFilteringFactor + mags[1] * (1.0f - magFilteringFactor);
                mags[2] = event.values[2] * magFilteringFactor + mags[2] * (1.0f - magFilteringFactor);

                isReady = true;
                break;
            case Sensor.TYPE_ACCELEROMETER:
                accels[0] = event.values[0] * accelFilteringFactor + accels[0] * (1.0f - accelFilteringFactor);
                accels[1] = event.values[1] * accelFilteringFactor + accels[1] * (1.0f - accelFilteringFactor);
                accels[2] = event.values[2] * accelFilteringFactor + accels[2] * (1.0f - accelFilteringFactor);
                break;

            default:
                return;
        }




        if(mags != null && accels != null && isReady) {
            isReady = false;

            SensorManager.getRotationMatrix(rot, inclination, accels, mags);

            boolean isLandscape = getIsLandscape();
            if(isLandscape) {
                outR = rot;
            } else {
                // Remap the coordinates to work in portrait mode.
                SensorManager.remapCoordinateSystem(rot, SensorManager.AXIS_X, SensorManager.AXIS_Z, outR);
            }

            SensorManager.getOrientation(outR, values);

            double x180pi = 180.0 / Math.PI;
            float azimuth = (float)(values[0] * x180pi);
            float pitch = (float)(values[1] * x180pi);
            float roll = (float)(values[2] * x180pi);

            // In landscape mode swap pitch and roll and invert the pitch.
            if(isLandscape) {
                float tmp = pitch;
                pitch = -roll;
                roll = -tmp;
                azimuth = 180 - azimuth;
            } else {
                pitch = -pitch - 90;
                azimuth = 90 - azimuth;
            }

            onOrientationChanged(azimuth,pitch,roll);
        }
    }




    private float[] mags = new float[3];
    private float[] accels = new float[3];
    private boolean isReady;

    private float[] rot = new float[9];
    private float[] outR = new float[9];
    private float[] inclination = new float[9];
    private float[] values = new float[3];



    /**
    Azimuth: angle between the magnetic north direction and the Y axis, around the Z axis (0 to 359). 0=North, 90=East, 180=South, 270=West
    Pitch: rotation around X axis (-180 to 180), with positive values when the z-axis moves toward the y-axis.
    Roll: rotation around Y axis (-90 to 90), with positive values when the x-axis moves toward the z-axis.
    */
    public abstract void onOrientationChanged(float azimuth, float pitch, float roll);
}

我试图弄清楚如何添加陀螺仪数据,但我做得不对。http://developer.android.com/reference/android/hardware/SensorEvent.html上的谷歌文档显示了一些从陀螺仪数据中获取增量矩阵的代码。这个想法似乎是我将加速计和磁传感器的滤波器调低,以使它们真正稳定。这将跟踪长期方向。

然后,我会保留来自陀螺仪的最新 N delta 矩阵的历史记录。每次我得到一个新的时,我都会放弃最旧的一个,然后将它们全部相乘以获得最终矩阵,然后将其与加速度计和磁传感器返回的稳定矩阵相乘。

这似乎不起作用。或者,至少,我的实现不起作用。结果远比加速度计更加紧张。增加陀螺仪历史的大小实际上会增加抖动,这让我认为我没有从陀螺仪计算正确的值。

public abstract class SensorsListener3
    implements
        SensorEventListener
{
    /** The lower this is, the greater the preference which is given to previous values. (slows change) */
    private static final float kFilteringFactor = 0.001f;
    private static final float magKFilteringFactor = 0.001f;


    public abstract boolean getIsLandscape();

    @Override
    public void onSensorChanged(SensorEvent event) {
        Sensor sensor = event.sensor;
        int type = sensor.getType();

        switch (type) {
            case Sensor.TYPE_MAGNETIC_FIELD:
                mags[0] = event.values[0] * magKFilteringFactor + mags[0] * (1.0f - magKFilteringFactor);
                mags[1] = event.values[1] * magKFilteringFactor + mags[1] * (1.0f - magKFilteringFactor);
                mags[2] = event.values[2] * magKFilteringFactor + mags[2] * (1.0f - magKFilteringFactor);

                isReady = true;
                break;
            case Sensor.TYPE_ACCELEROMETER:
                accels[0] = event.values[0] * kFilteringFactor + accels[0] * (1.0f - kFilteringFactor);
                accels[1] = event.values[1] * kFilteringFactor + accels[1] * (1.0f - kFilteringFactor);
                accels[2] = event.values[2] * kFilteringFactor + accels[2] * (1.0f - kFilteringFactor);
                break;

            case Sensor.TYPE_GYROSCOPE:
                gyroscopeSensorChanged(event);
                break;

            default:
                return;
        }




        if(mags != null && accels != null && isReady) {
            isReady = false;

            SensorManager.getRotationMatrix(rot, inclination, accels, mags);

            boolean isLandscape = getIsLandscape();
            if(isLandscape) {
                outR = rot;
            } else {
                // Remap the coordinates to work in portrait mode.
                SensorManager.remapCoordinateSystem(rot, SensorManager.AXIS_X, SensorManager.AXIS_Z, outR);
            }

            if(gyroUpdateTime!=0) {
                matrixHistory.mult(matrixTmp,matrixResult);
                outR = matrixResult;
            }

            SensorManager.getOrientation(outR, values);

            double x180pi = 180.0 / Math.PI;
            float azimuth = (float)(values[0] * x180pi);
            float pitch = (float)(values[1] * x180pi);
            float roll = (float)(values[2] * x180pi);

            // In landscape mode swap pitch and roll and invert the pitch.
            if(isLandscape) {
                float tmp = pitch;
                pitch = -roll;
                roll = -tmp;
                azimuth = 180 - azimuth;
            } else {
                pitch = -pitch - 90;
                azimuth = 90 - azimuth;
            }

            onOrientationChanged(azimuth,pitch,roll);
        }
    }



    private void gyroscopeSensorChanged(SensorEvent event) {
        // This timestep's delta rotation to be multiplied by the current rotation
        // after computing it from the gyro sample data.
        if(gyroUpdateTime != 0) {
            final float dT = (event.timestamp - gyroUpdateTime) * NS2S;
            // Axis of the rotation sample, not normalized yet.
            float axisX = event.values[0];
            float axisY = event.values[1];
            float axisZ = event.values[2];

            // Calculate the angular speed of the sample
            float omegaMagnitude = (float)Math.sqrt(axisX*axisX + axisY*axisY + axisZ*axisZ);

            // Normalize the rotation vector if it's big enough to get the axis
            if(omegaMagnitude > EPSILON) {
                axisX /= omegaMagnitude;
                axisY /= omegaMagnitude;
                axisZ /= omegaMagnitude;
            }

            // Integrate around this axis with the angular speed by the timestep
            // in order to get a delta rotation from this sample over the timestep
            // We will convert this axis-angle representation of the delta rotation
            // into a quaternion before turning it into the rotation matrix.
            float thetaOverTwo = omegaMagnitude * dT / 2.0f;
            float sinThetaOverTwo = (float)Math.sin(thetaOverTwo);
            float cosThetaOverTwo = (float)Math.cos(thetaOverTwo);
            deltaRotationVector[0] = sinThetaOverTwo * axisX;
            deltaRotationVector[1] = sinThetaOverTwo * axisY;
            deltaRotationVector[2] = sinThetaOverTwo * axisZ;
            deltaRotationVector[3] = cosThetaOverTwo;
        }
        gyroUpdateTime = event.timestamp;
        SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
        // User code should concatenate the delta rotation we computed with the current rotation
        // in order to get the updated rotation.
        // rotationCurrent = rotationCurrent * deltaRotationMatrix;
        matrixHistory.add(deltaRotationMatrix);
    }



    private float[] mags = new float[3];
    private float[] accels = new float[3];
    private boolean isReady;

    private float[] rot = new float[9];
    private float[] outR = new float[9];
    private float[] inclination = new float[9];
    private float[] values = new float[3];

    // gyroscope stuff
    private long gyroUpdateTime = 0;
    private static final float NS2S = 1.0f / 1000000000.0f;
    private float[] deltaRotationMatrix = new float[9];
    private final float[] deltaRotationVector = new float[4];
//TODO: I have no idea how small this value should be.
    private static final float EPSILON = 0.000001f;
    private float[] matrixMult = new float[9];
    private MatrixHistory matrixHistory = new MatrixHistory(100);
    private float[] matrixTmp = new float[9];
    private float[] matrixResult = new float[9];


    /**
    Azimuth: angle between the magnetic north direction and the Y axis, around the Z axis (0 to 359). 0=North, 90=East, 180=South, 270=West 
    Pitch: rotation around X axis (-180 to 180), with positive values when the z-axis moves toward the y-axis. 
    Roll: rotation around Y axis (-90 to 90), with positive values when the x-axis moves toward the z-axis.
    */
    public abstract void onOrientationChanged(float azimuth, float pitch, float roll);
}


public class MatrixHistory
{
    public MatrixHistory(int size) {
        vals = new float[size][];
    }

    public void add(float[] val) {
        synchronized(vals) {
            vals[ix] = val;
            ix = (ix + 1) % vals.length;
            if(ix==0)
                full = true;
        }
    }

    public void mult(float[] tmp, float[] output) {
        synchronized(vals) {
            if(full) {
                for(int i=0; i<vals.length; ++i) {
                    if(i==0) {
                        System.arraycopy(vals[i],0,output,0,vals[i].length);
                    } else {
                        MathUtils.multiplyMatrix3x3(output,vals[i],tmp);
                        System.arraycopy(tmp,0,output,0,tmp.length);
                    }
                }
            } else {
                if(ix==0)
                    return;
                for(int i=0; i<ix; ++i) {
                    if(i==0) {
                        System.arraycopy(vals[i],0,output,0,vals[i].length);
                    } else {
                        MathUtils.multiplyMatrix3x3(output,vals[i],tmp);
                        System.arraycopy(tmp,0,output,0,tmp.length);
                    }
                }
            }
        }
    }


    private int ix = 0;
    private boolean full = false;
    private float[][] vals;
}

第二个代码块包含我从第一个代码块中添加陀螺仪的更改。

具体来说,加速度的过滤因子变小(使值更稳定)。MatrixHistory 类跟踪在 gyroscopeSensorChanged 方法中计算的最后 100 个陀螺仪 deltaRotationMatrix 值。

我在这个网站上看到了很多关于这个主题的问题。他们帮助我达到了这一点,但我不知道下一步该做什么。我真希望 Sensor Fusion 的人刚刚在某处发布了一些代码。显然,他把这一切都放在了一起。

4

2 回答 2

51

好吧,即使知道卡尔曼滤波器是什么,也要为您 +1。如果你愿意,我会编辑这篇文章并给你我几年前写的代码来做你想做的事情。

但首先,我会告诉你为什么不需要它。

如上所述,Android 传感器堆栈的现代实现使用Sensor Fusion 。这只是意味着所有可用数据——加速度、磁力、陀螺仪——都在一个算法中收集在一起,然后所有输出都以 Android 传感器的形式读回。

编辑:我刚刚偶然发现了这个关于这个主题的极好的谷歌技术讲座:Android 设备上的传感器融合:运动处理的革命。如果您对该主题感兴趣,那么值得花 45 分钟观看。

本质上,Sensor Fusion 是一个黑匣子。我查看了 Android 实现的源代码,它是一个用 C++ 编写的大卡尔曼滤波器。那里有一些非常好的代码,比我写过的任何过滤器都要复杂得多,而且可能比你正在写的更复杂。请记住,这些人这样做是为了谋生。

我还知道至少有一家芯片组制造商拥有自己的传感器融合实施方案。然后设备制造商根据他们自己的标准在 Android 和供应商实现之间进行选择。

最后,正如 Stan 上面提到的,Invensense 在芯片级有自己的传感器融合实现。

无论如何,归根结底,您设备中的内置传感器融合可能优于您或我可以拼凑的任何东西。所以你真正想做的是访问它。

在 Android 中,有物理传感器和虚拟传感器。虚拟传感器是从可用物理传感器合成的传感器。最著名的示例是 TYPE_ORIENTATION,它采用加速度计和磁力计并创建滚动/俯仰/航向输出。(顺便说一句,你不应该使用这个传感器;它有太多的限制。)

但重要的是,较新版本的 Android 包含这两个新的虚拟传感器:

TYPE_GRAVITY 是过滤掉运动效果的加速度计输入 TYPE_LINEAR_ACCELERATION 是过滤掉重力分量的加速度计。

这两个虚拟传感器是通过加速度计输入和陀螺仪输入的组合来合成的。

另一个值得注意的传感器是 TYPE_ROTATION_VECTOR,它是由加速度计、磁力计和陀螺仪合成的四元数。它代表了设备的完整 3-d 方向,线性加速度的影响被过滤掉了。

然而,对于大多数人来说,四元数有点抽象,因为无论如何您都可能使用 3-d 转换,所以最好的方法是通过 SensorManager.getRotationMatrix() 结合 TYPE_GRAVITY 和 TYPE_MAGNETIC_FIELD。

还有一点:如果您使用的是运行旧版本 Android 的设备,则需要检测到您没有收到 TYPE_GRAVITY 事件并改用 TYPE_ACCELEROMETER。从理论上讲,这将是一个使用您自己的卡尔曼滤波器的地方,但如果您的设备没有内置传感器融合,它可能也没有陀螺仪。

无论如何,这里有一些示例代码来展示我是如何做到的。

  // Requires 1.5 or above

  class Foo extends Activity implements SensorEventListener {

    SensorManager sensorManager;
    float[] gData = new float[3];           // Gravity or accelerometer
    float[] mData = new float[3];           // Magnetometer
    float[] orientation = new float[3];
    float[] Rmat = new float[9];
    float[] R2 = new float[9];
    float[] Imat = new float[9];
    boolean haveGrav = false;
    boolean haveAccel = false;
    boolean haveMag = false;

    onCreate() {
        // Get the sensor manager from system services
        sensorManager =
          (SensorManager)getSystemService(Context.SENSOR_SERVICE);
    }

    onResume() {
        super.onResume();
        // Register our listeners
        Sensor gsensor = sensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY);
        Sensor asensor = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
        Sensor msensor = sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);
        sensorManager.registerListener(this, gsensor, SensorManager.SENSOR_DELAY_GAME);
        sensorManager.registerListener(this, asensor, SensorManager.SENSOR_DELAY_GAME);
        sensorManager.registerListener(this, msensor, SensorManager.SENSOR_DELAY_GAME);
    }

    public void onSensorChanged(SensorEvent event) {
        float[] data;
        switch( event.sensor.getType() ) {
          case Sensor.TYPE_GRAVITY:
            gData[0] = event.values[0];
            gData[1] = event.values[1];
            gData[2] = event.values[2];
            haveGrav = true;
            break;
          case Sensor.TYPE_ACCELEROMETER:
            if (haveGrav) break;    // don't need it, we have better
            gData[0] = event.values[0];
            gData[1] = event.values[1];
            gData[2] = event.values[2];
            haveAccel = true;
            break;
          case Sensor.TYPE_MAGNETIC_FIELD:
            mData[0] = event.values[0];
            mData[1] = event.values[1];
            mData[2] = event.values[2];
            haveMag = true;
            break;
          default:
            return;
        }

        if ((haveGrav || haveAccel) && haveMag) {
            SensorManager.getRotationMatrix(Rmat, Imat, gData, mData);
            SensorManager.remapCoordinateSystem(Rmat,
                    SensorManager.AXIS_Y, SensorManager.AXIS_MINUS_X, R2);
            // Orientation isn't as useful as a rotation matrix, but
            // we'll show it here anyway.
            SensorManager.getOrientation(R2, orientation);
            float incl = SensorManager.getInclination(Imat);
            Log.d(TAG, "mh: " + (int)(orientation[0]*DEG));
            Log.d(TAG, "pitch: " + (int)(orientation[1]*DEG));
            Log.d(TAG, "roll: " + (int)(orientation[2]*DEG));
            Log.d(TAG, "yaw: " + (int)(orientation[0]*DEG));
            Log.d(TAG, "inclination: " + (int)(incl*DEG));
        }
      }
    }

嗯;如果您碰巧有一个四元数库,那么接收 TYPE_ROTATION_VECTOR 并将其转换为数组可能更简单。

于 2012-12-15T19:22:03.763 回答
5

对于在哪里可以找到完整代码的问题,这里有一个 Android 果冻豆的默认实现:https ://android.googlesource.com/platform/frameworks/base/+/jb-release/services/sensorservice/ 首先检查融合。 cpp/小时。它使用修改后的罗德里格斯参数(接近欧拉角)而不是四元数。除了方向之外,卡尔曼滤波器还估计陀螺漂移。对于测量更新,它使用磁力计,并且有点不正确地使用加速度(比力)。

要使用该代码,您应该是一个向导或了解 INS 和 KF 的基础知识。许多参数必须经过微调才能使过滤器正常工作。正如爱德华充分指出的那样,这些人这样做是为了生活。

At least in google's galaxy nexus this default implementation is left unused and is overridden by Invense's proprietary system.

于 2014-01-13T20:25:18.270 回答