我可以想到三种方法来解决这个问题
简单循环
只需遍历您拥有的所有 2D 索引,并使用冒号访问剩余的维度:
for jj = 1:size(twoDinds,1)
M(twoDinds(jj,1),twoDinds(jj,2),:,:) = rand;
end
线性指数的矢量化计算
跳过sub2ind
并向量化线性索引的计算:
% generalized for arbitrary dimensions of M
sz = size(M);
nd = ndims(M);
arg = arrayfun(@(x)1:x, sz(3:nd), 'UniformOutput', false);
[argout{1:nd-2}] = ndgrid(arg{:});
argout = cellfun(...
@(x) repmat(x(:), size(twoDinds,1),1), ...
argout, 'Uniformoutput', false);
twoDinds = kron(twoDinds, ones(prod(sz(3:nd)),1));
% the linear indices
inds = twoDinds(:,1) + ([twoDinds(:,2) [argout{:}]]-1) * cumprod(sz(1:3)).';
Sub2ind
只需使用 Matlab 附带的现成工具:
inds = sub2ind(size(M), twoDinds(:,1), twoDinds(:,2), argout{:});
速度
那么哪个最快?让我们来了解一下:
clc
M = nan(4,4,2,2);
sz = size(M);
nd = ndims(M);
twoDinds = [...
1 2
4 3
3 4
4 4
2 1];
tic
for ii = 1:1e3
for jj = 1:size(twoDinds,1)
M(twoDinds(jj,1),twoDinds(jj,2),:,:) = rand;
end
end
toc
tic
twoDinds_prev = twoDinds;
for ii = 1:1e3
twoDinds = twoDinds_prev;
arg = arrayfun(@(x)1:x, sz(3:nd), 'UniformOutput', false);
[argout{1:nd-2}] = ndgrid(arg{:});
argout = cellfun(...
@(x) repmat(x(:), size(twoDinds,1),1), ...
argout, 'Uniformoutput', false);
twoDinds = kron(twoDinds, ones(prod(sz(3:nd)),1));
inds = twoDinds(:,1) + ([twoDinds(:,2) [argout{:}]]-1) * cumprod(sz(1:3)).';
M(inds) = rand;
end
toc
tic
for ii = 1:1e3
twoDinds = twoDinds_prev;
arg = arrayfun(@(x)1:x, sz(3:nd), 'UniformOutput', false);
[argout{1:nd-2}] = ndgrid(arg{:});
argout = cellfun(...
@(x) repmat(x(:), size(twoDinds,1),1), ...
argout, 'Uniformoutput', false);
twoDinds = kron(twoDinds, ones(prod(sz(3:nd)),1));
inds = sub2ind(size(M), twoDinds(:,1), twoDinds(:,2), argout{:});
M(inds) = rand;
end
toc
结果:
Elapsed time is 0.004778 seconds. % loop
Elapsed time is 0.807236 seconds. % vectorized linear inds
Elapsed time is 0.839970 seconds. % linear inds with sub2ind
结论:使用循环。
诚然,上述测试很大程度上受到 JIT 未能编译最后两个循环的影响,以及对 4D 数组的非特异性(最后两种方法也适用于 ND 数组)。制作 4D 的专用版本无疑会快得多。
尽管如此,由于 JIT,使用简单循环的索引是最简单的,最简单的,也非常快。