我是 C 编程的新手。我正在使用“C 中的数值食谱”一书中的 ac 代码进行多项式回归。在这个程序中,我需要用 fpoly 函数替换 (*funcs) 函数。但我不知道如何做到这一点以及如何将 fpoly 函数更改为像 (*fpoly)。你能帮我解决这个问题吗?
我真的很感激任何帮助。
void fpoly(float x, float p[], int np)
//Fitting routine for a polynomial of degree np-1, with coefficients in the array p[1..np].
{
int j;
p[1]=1.0;
for (j=2;j<=np;j++) p[j]=p[j-1]*x;
}
void lfit( float x[], float y[], float sig[], int ndat, float a[], int ia[], int ma, float **covar, float *chisq, void (*funcs)(float, float [], int))
这是完整的程序:
void lfit(float x[], float y[], float sig[], int ndat, float a[], int ia[],
int ma, float **covar, float *chisq, void (*funcs) (float,float[], int))
/*Given a set of data points x[1..ndat], y[1..ndat] with individual standard deviations
sig[1..ndat], use χ2 minimization to fit for some or all of the coefficients a[1..ma] of
a function that depends linearly on a, y =sum(i)( ai × afunci(x)). The input array ia[1..ma]
indicates by nonzero entries those components of a that should be fitted for, and by zero entries
those components that should be held fixed at their input values. The program returns values
for a[1..ma], χ2 = chisq, and the covariance matrix covar[1..ma][1..ma]. (Parameters
held fixed will return zero covariances.)Th e user supplies a routine funcs(x,afunc,ma) that
returns the ma basis functions evaluated at x = x in the array afunc[1..ma].*/
{
void covsrt(float **covar, int ma, int ia[], int mfit);
void gaussj(float **a, int n, float **b, int m);
int i, j, k, l, m, mfit = 0;
float ym, wt, sum, sig2i, **beta, *afunc;
beta = matrix(1, ma, 1, 1);
afunc = vector(1, ma);
for (j = 1; j <= ma; j++)
if (ia[j])
mfit++;
if (mfit == 0)
nrerror("lfit: no parameters to be fitted");
for (j = 1; j <= mfit; j++) { //Initialize the (symmetric)mat rix.
for (k = 1; k <= mfit; k++)
covar[j][k] = 0.0;
beta[j][1] = 0.0;
}
for (i = 1; i <= ndat; i++) {
(*funcs) (x[i], afunc, ma);
ym = y[i];
if (mfit < ma) { //Subtract off dependences on known pieces
for (j = 1; j <= ma; j++) //of the fitting function.
if (!ia[j])
ym -= a[j] * afunc[j];
}
sig2i = 1.0 / SQR(sig[i]);
for (j = 0, l = 1; l <= ma; l++) {
if (ia[l]) {
wt = afunc[l] * sig2i;
for (j++, k = 0, m = 1; m <= l; m++)
if (ia[m])
covar[j][++k] += wt * afunc[m];
beta[j][1] += ym * wt;
}
}
}
for (j = 2; j <= mfit; j++) //Fill in above the diagonal from symmetry.
for (k = 1; k < j; k++)
covar[k][j] = covar[j][k];
gaussj(covar, mfit, beta, 1); //Matrix solution.
for (j = 0, l = 1; l <= ma; l++)
if (ia[l])
a[l] = beta[++j][1]; //Partition solution to appropriate coefficients
*chisq = 0.0;
for (i = 1; i <= ndat; i++) { //Evaluate χ2 of the fit.
(*funcs) (x[i], afunc, ma);
for (sum = 0.0, j = 1; j <= ma; j++)
sum += a[j] * afunc[j];
*chisq += SQR((y[i] - sum) / sig[i]);
}
covsrt(covar, ma, ia, mfit); //Sort covariance matrix to true order of fittin
free_vector(afunc, 1, ma); //coefficients.
free_matrix(beta, 1, ma, 1, 1);
}