2

我正在尝试计算观察数据和模拟数据的卡方差异,并使用贝叶斯推理评估模型拟合。观察到的数据集包含缺失(“NA”)值。但是,模拟的没有缺失值。因此,我无法比较它们之间的差异统计数据。

下面给出的代码是一个示例,与我的工作类似:

p <- array(runif(3000*195*6, 0, 1), c(3000, 195, 6))
N <- array(rpois(3000*195, 10), c(3000, 195))
y <- array(0, c(195, 6))
for(j in 1:195){
  for(k in 1:6){
    y[j,k] <- (rbinom(1, N[j], p[1,j,k]))
  }
}

foo <- runif(50, 1, 195)
bar <- runif(50, 1, 6)
for(i in 1:50){
  y[foo[i], bar[i]] <- NA
}

该代码派生了包含一些缺失值(“NA”)的响应变量 y。然后,我计算了数据“y”和模拟的“理想”数据集“y.new”的卡方。相反, y.new 没有任何缺失值。因此,当我尝试比较 E 和 E.new 的总和时,如果我遗漏了 y 而不是 y.new 中的缺失数据,则 E.new 应该总是更大。

eval <- array(NA, c(3000, 195, 6))
E <- array(NA, c(3000, 195, 6))
E.new <- array(NA, c(3000, 195, 6))
y.new <- array(NA, c(195, 6))
for(i in 1:3000){
  for(j in 1:195){
    for(k in 1:6){
       eval[i,j,k] <- p[i,j,k]*N[i,j]
       E[i,j,k] <- ((y[j,k] - eval[i,j,k])^2) / (eval[i,j,k] + 0.5)
       y.new[i,j,k] <- rbinom(1, N[i,j], p[i,j,k])  # Create new "ideal" dataset
       E.new[i,j,k] <- ((y.new[i,j,k] - eval[i,j,k])^2) / (eval[i,j,k] + 0.5)
    }
  }
} # very slow! think about how to vectorize instead of nested for loops

fit <- sum(E)
fit.new <- sum(E.new)

现在,我的问题是如何处理缺失值?目前,由于缺少值,上面的代码无法从 y 中减去 eval。即使可以,fit 和 fit.new 也无法比较。我的想法是在 y 中找到缺失值的位置,并从我正在使用的所有其他数组中删除那些相同的 [j,k] 值。关于如何最好地做到这一点的任何建议?

编辑:我得到了一个非常奇怪的结果。无论我是按上面还是下面(使用扫描)运行代码,E[1,,] 都比 E[>1,,] 小得多。特别奇怪的是 eval[1,,] 和 eval[>1,,] 看起来是一样的。我什至尝试复制 y[j,k] 以使其成为 y[i,j,k] ,其中每个 y[i,,] 相等,只是为了看看是否是处理不同大小的矩阵才是问题所在。有谁知道为什么会这样?理论上,有了这个模拟数据,我认为 E[i,,] 和 E.new[i,,] 的所有迭代应该有点相似。以下是一些摘要信息,以显示我在说什么。这似乎是一个新问题,但它与我原来的问题有关,我只是认为一定是 NA 导致了问题,但似乎这可能不是唯一发生的事情。

> summary(eval[1,,])
       V1                 V2                 V3                V4          
 Min.   : 0.01167   Min.   : 0.01476   Min.   : 0.0293   Min.   : 0.01953  
 1st Qu.: 2.60909   1st Qu.: 2.35093   1st Qu.: 2.5239   1st Qu.: 1.85789  
 Median : 4.85460   Median : 5.12719   Median : 5.2480   Median : 4.35639  
 Mean   : 5.09371   Mean   : 5.39451   Mean   : 5.3891   Mean   : 4.72061  
 3rd Qu.: 6.91273   3rd Qu.: 7.44676   3rd Qu.: 7.5431   3rd Qu.: 7.06119  
 Max.   :15.81298   Max.   :14.94309   Max.   :14.9851   Max.   :16.25751  

> summary(eval1[2,,])
       V1                 V2                 V3                V4           
 Min.   : 0.06346   Min.   : 0.06468   Min.   : 0.2092   Min.   : 0.006769  
 1st Qu.: 2.44825   1st Qu.: 1.93702   1st Qu.: 2.4226   1st Qu.: 2.426689  
 Median : 4.16865   Median : 4.01536   Median : 5.0771   Median : 4.833679  
 Mean   : 4.85646   Mean   : 4.64887   Mean   : 5.3450   Mean   : 5.169656  
 3rd Qu.: 6.64691   3rd Qu.: 6.96278   3rd Qu.: 7.7034   3rd Qu.: 7.229125  
 Max.   :13.00335   Max.   :13.79093   Max.   :17.2673   Max.   :17.915080  

> summary(E[1,,])
       V1                V2                V3                 V4          
 Min.   :0.00001   Min.   :0.00000   Min.   :0.000003   Min.   :0.000008  
 1st Qu.:0.02744   1st Qu.:0.02723   1st Qu.:0.023008   1st Qu.:0.035854  
 Median :0.11750   Median :0.11889   Median :0.109138   Median :0.146706  
 Mean   :0.39880   Mean   :0.41636   Mean   :0.353876   Mean   :0.479533  
 3rd Qu.:0.46435   3rd Qu.:0.40993   3rd Qu.:0.390625   3rd Qu.:0.604021  
 Max.   :4.43466   Max.   :4.83871   Max.   :6.254577   Max.   :5.231650  
 NA's   :10        NA's   :8         NA's   :8          NA's   :10        

> summary(E[2,,])
       V1                 V2                  V3           
 Min.   :  0.0000   Min.   :  0.00003   Min.   :  0.00002  
 1st Qu.:  0.8213   1st Qu.:  0.42091   1st Qu.:  0.36853  
 Median :  2.0454   Median :  2.31697   Median :  2.39892  
 Mean   :  8.0619   Mean   :  9.40838   Mean   :  6.38919  
 3rd Qu.:  5.6755   3rd Qu.:  6.34782   3rd Qu.:  4.89749  
 Max.   :395.9499   Max.   :172.83324   Max.   :120.93648  
 NA's   :10         NA's   :8           NA's   :8          

谢谢,丹

4

1 回答 1

4

您可以在内部循环中添加测试并更改循环的顺序,如下所示:

...
for(j in 1:195){
   for(k in 1:6){
      if ( !is.na(y(j,k)) ) {
         for(i in 1:3000){
             ...
         }
      }
   }
}
...

为了更有效地矢量化内部循环(如上面的评论中所述)。

例如,也可以定义一个与y表示已定义位置的子集具有相同维度的逻辑数组,subset <- !is.na(y)并使用它来代替。

于 2012-11-18T09:29:43.713 回答