我有一个简单的(强力)递归求解器算法,它需要大量时间来获取更大的 OpxCnt 变量值。对于小的 OpxCnt 值,没问题,就像一个魅力。随着 OpxCnt 变量变大,算法变得非常慢。这是意料之中的,但有任何优化或不同的算法吗?
我的最终目标是 :: 我想通过执行一些具有最小操作成本的读取操作来读取映射数组中的所有 True 值。这与最小读取操作数不同。在函数完成时,应该没有未读的 True 值。
map 数组由一些外部函数填充,任何成员可能是 1 或 0。
例如 ::
地图[4] = 1; 地图[8] = 1;
Adr=4,Cnt=5 的 1 次读取操作成本最低 (35)
然而
2 次读取操作 Adr=4,Cnt=1 & Adr=8,Cnt=1 成本 (27+27=54)
#include <string.h>
typedef unsigned int Ui32;
#define cntof(x) (sizeof(x) / sizeof((x)[0]))
#define ZERO(x) do{memset(&(x), 0, sizeof(x));}while(0)
typedef struct _S_MB_oper{
Ui32 Adr;
Ui32 Cnt;
}S_MB_oper;
typedef struct _S_MB_code{
Ui32 OpxCnt;
S_MB_oper OpxLst[20];
Ui32 OpxPay;
}S_MB_code;
char map[65536] = {0};
static int opx_ListOkey(S_MB_code *px_kod, char *pi_map)
{
int cost = 0;
char map[65536];
memcpy(map, pi_map, sizeof(map));
for(Ui32 o = 0; o < px_kod->OpxCnt; o++)
{
for(Ui32 i = 0; i < px_kod->OpxLst[o].Cnt; i++)
{
Ui32 adr = px_kod->OpxLst[o].Adr + i;
// ...
if(adr < cntof(map)){map[adr] = 0x0;}
}
}
for(Ui32 i = 0; i < cntof(map); i++)
{
if(map[i] > 0x0){return -1;}
}
// calculate COST...
for(Ui32 o = 0; o < px_kod->OpxCnt; o++)
{
cost += 12;
cost += 13;
cost += (2 * px_kod->OpxLst[o].Cnt);
}
px_kod->OpxPay = (Ui32)cost; return cost;
}
static int opx_FindNext(char *map, int pi_idx)
{
int i;
if(pi_idx < 0){pi_idx = 0;}
for(i = pi_idx; i < 65536; i++)
{
if(map[i] > 0x0){return i;}
}
return -1;
}
static int opx_FindZero(char *map, int pi_idx)
{
int i;
if(pi_idx < 0){pi_idx = 0;}
for(i = pi_idx; i < 65536; i++)
{
if(map[i] < 0x1){return i;}
}
return -1;
}
static int opx_Resolver(S_MB_code *po_bst, S_MB_code *px_wrk, char *pi_map, Ui32 *px_idx, int _min, int _max)
{
int pay, kmax, kmin = 1;
if(*px_idx >= px_wrk->OpxCnt)
{
return opx_ListOkey(px_wrk, pi_map);
}
_min = opx_FindNext(pi_map, _min);
// ...
if(_min < 0){return -1;}
kmax = (_max - _min) + 1;
// must be less than 127 !
if(kmax > 127){kmax = 127;}
// is this recursion the last one ?
if(*px_idx >= (px_wrk->OpxCnt - 1))
{
kmin = kmax;
}
else
{
int zero = opx_FindZero(pi_map, _min);
// ...
if(zero > 0)
{
kmin = zero - _min;
// enforce kmax limit !?
if(kmin > kmax){kmin = kmax;}
}
}
for(int _cnt = kmin; _cnt <= kmax; _cnt++)
{
px_wrk->OpxLst[*px_idx].Adr = (Ui32)_min;
px_wrk->OpxLst[*px_idx].Cnt = (Ui32)_cnt;
(*px_idx)++;
pay = opx_Resolver(po_bst, px_wrk, pi_map, px_idx, (_min + _cnt), _max);
(*px_idx)--;
if(pay > 0)
{
if((Ui32)pay < po_bst->OpxPay)
{
memcpy(po_bst, px_wrk, sizeof(*po_bst));
}
}
}
return (int)po_bst->OpxPay;
}
int main()
{
int _max = -1, _cnt = 0;
S_MB_code best = {0};
S_MB_code work = {0};
// SOME TEST DATA...
map[ 4] = 1;
map[ 8] = 1;
/*
map[64] = 1;
map[72] = 1;
map[80] = 1;
map[88] = 1;
map[96] = 1;
*/
// SOME TEST DATA...
for(int i = 0; i < cntof(map); i++)
{
if(map[i] > 0)
{
_max = i; _cnt++;
}
}
// num of Opx can be as much as num of individual bit(s).
if(_cnt > cntof(work.OpxLst)){_cnt = cntof(work.OpxLst);}
best.OpxPay = 1000000000L; // invalid great number...
for(int opx_cnt = 1; opx_cnt <= _cnt; opx_cnt++)
{
int rv;
Ui32 x = 0;
ZERO(work); work.OpxCnt = (Ui32)opx_cnt;
rv = opx_Resolver(&best, &work, map, &x, -42, _max);
}
return 0;
}