我的解决方案很简单,“懒惰”,通过迭代运行,没什么花哨的。
在大多数拥有不错数学库的语言中,您只需要算法本身即可。
但是在 bc 中,您需要实现简单的功能,例如
int() to return integer part of a number ,
abs() to return absolute value ,
float() to return floating part of a number ,
round() to round to nearest integer.
如果在 (1/eps) 次迭代后没有找到任何东西,则循环以最后一个结果中断。
eps=10^-4 /*Tweak for more or less accuracy */
define int(x) {
auto s ;
s = scale ;
scale = 0 ;
x /= 1 ;
scale = s ;
return x ;
}
define round(x) { return int(x+.5-(x<0)) ; }
define abs(x) { if ( x < 0 ) x=-x ; return x ; }
define float(x) { return abs(x-int(x)) ; }
define void frac(x) {
auto f, j, n, z ;
f = float(x) ;
j = 1 / eps ;
z = .5 ;
if ( f != 0 ) {
while ( ( n++ < j ) && ( abs( z - round(z) ) > eps ) ) z = n / f ;
n -= 1 ;
if ( x < 0 ) n = -n ;
x = int(x)
z = round(z) ;
print n + x*z , "/" , z , " = "
if ( x != 0 ) print x , " + " , n , "/" , z , " = "
}
print x+n/z , "\n" ;
}
使用标准精度(eps=.0001),您可以得到:
frac(-.714285)
-5/7 = -.71428571428571428571
sqrt(2)
1.414213562373
frac(sqrt(2))
19601/13860 = 1 + 5741/13860 = 1.414213564213
6-7/pi
3.77183080
eps=.000001 ; frac(6-7/pi)
1314434/348487 = 3 + 268973/348487 = 3.77183080