以下是Boost的实现方式。代码注释很好。
template <typename IntType>
bool rational<IntType>::operator< (const rational<IntType>& r) const
{
// Avoid repeated construction
int_type const zero( 0 );
// This should really be a class-wide invariant. The reason for these
// checks is that for 2's complement systems, INT_MIN has no corresponding
// positive, so negating it during normalization keeps it INT_MIN, which
// is bad for later calculations that assume a positive denominator.
BOOST_ASSERT( this->den > zero );
BOOST_ASSERT( r.den > zero );
// Determine relative order by expanding each value to its simple continued
// fraction representation using the Euclidian GCD algorithm.
struct { int_type n, d, q, r; } ts = { this->num, this->den, this->num /
this->den, this->num % this->den }, rs = { r.num, r.den, r.num / r.den,
r.num % r.den };
unsigned reverse = 0u;
// Normalize negative moduli by repeatedly adding the (positive) denominator
// and decrementing the quotient. Later cycles should have all positive
// values, so this only has to be done for the first cycle. (The rules of
// C++ require a nonnegative quotient & remainder for a nonnegative dividend
// & positive divisor.)
while ( ts.r < zero ) { ts.r += ts.d; --ts.q; }
while ( rs.r < zero ) { rs.r += rs.d; --rs.q; }
// Loop through and compare each variable's continued-fraction components
while ( true )
{
// The quotients of the current cycle are the continued-fraction
// components. Comparing two c.f. is comparing their sequences,
// stopping at the first difference.
if ( ts.q != rs.q )
{
// Since reciprocation changes the relative order of two variables,
// and c.f. use reciprocals, the less/greater-than test reverses
// after each index. (Start w/ non-reversed @ whole-number place.)
return reverse ? ts.q > rs.q : ts.q < rs.q;
}
// Prepare the next cycle
reverse ^= 1u;
if ( (ts.r == zero) || (rs.r == zero) )
{
// At least one variable's c.f. expansion has ended
break;
}
ts.n = ts.d; ts.d = ts.r;
ts.q = ts.n / ts.d; ts.r = ts.n % ts.d;
rs.n = rs.d; rs.d = rs.r;
rs.q = rs.n / rs.d; rs.r = rs.n % rs.d;
}
// Compare infinity-valued components for otherwise equal sequences
if ( ts.r == rs.r )
{
// Both remainders are zero, so the next (and subsequent) c.f.
// components for both sequences are infinity. Therefore, the sequences
// and their corresponding values are equal.
return false;
}
else
{
// Exactly one of the remainders is zero, so all following c.f.
// components of that variable are infinity, while the other variable
// has a finite next c.f. component. So that other variable has the
// lesser value (modulo the reversal flag!).
return ( ts.r != zero ) != static_cast<bool>( reverse );
}
}