我正在使用 numpy.cov 从超过 400 个时间序列的数据集中创建协方差矩阵。使用 linalg.det 给我一个零值,所以矩阵是奇异的。我可以使用 linalg.svd 来查看秩比列数少 2,因此在协方差矩阵的某处,我有一些线性组合可以使矩阵退化。我在基础时间序列上使用了 corrcoef,但没有相关性 > 0.78,所以在那里并不明显。有人可以建议一种方法来确定退化列的位置。谢谢你。
问问题
4219 次
1 回答
8
如果您对QR
矩阵 进行分解,A
沿R
对角线具有非零值的列对应于 的线性独立列A
。
import numpy as np
linalg = np.linalg
def independent_columns(A, tol = 1e-05):
"""
Return an array composed of independent columns of A.
Note the answer may not be unique; this function returns one of many
possible answers.
http://stackoverflow.com/q/13312498/190597 (user1812712)
http://math.stackexchange.com/a/199132/1140 (Gerry Myerson)
http://mail.scipy.org/pipermail/numpy-discussion/2008-November/038705.html
(Anne Archibald)
>>> A = np.array([(2,4,1,3),(-1,-2,1,0),(0,0,2,2),(3,6,2,5)])
>>> independent_columns(A)
np.array([[1, 4],
[2, 5],
[3, 6]])
"""
Q, R = linalg.qr(A)
independent = np.where(np.abs(R.diagonal()) > tol)[0]
return A[:, independent]
def matrixrank(A,tol=1e-8):
"""
http://mail.scipy.org/pipermail/numpy-discussion/2008-February/031218.html
"""
s = linalg.svd(A,compute_uv=0)
return sum( np.where( s>tol, 1, 0 ) )
matrices = [
np.array([(2,4,1,3),(-1,-2,1,0),(0,0,2,2),(3,6,2,5)]),
np.array([(1,2,3),(2,4,6),(4,5,6)]).T,
np.array([(1,2,3,1),(2,4,6,2),(4,5,6,3)]).T,
np.array([(1,2,3,1),(2,4,6,3),(4,5,6,3)]).T,
np.array([(1,2,3),(2,4,6),(4,5,6),(7,8,9)]).T
]
for A in matrices:
B = independent_columns(A)
assert matrixrank(A) == matrixrank(B) == B.shape[-1]
assert matrixrank(A) == matrixrank(B)
检查independent_columns
函数是否返回与 具有相同等级的矩阵A
。
assert matrixrank(B) == B.shape[-1]
检查 的排名是否B
等于 的列数B
。
于 2012-11-09T18:26:02.173 回答