用于scipy.stats.norm
生成随机样本,然后运行它scipy.stats.normaltest
会产生变化很大的输出:
from scipy.stats import norm, normaltest
normaltest(norm.rvs(size=1000))
# (0.10435743048081543, 0.94915922246569517)
normaltest(norm.rvs(size=1000))
# (0.57583529133190114, 0.74982334089826597)
normaltest(norm.rvs(size=1000))
# (0.074086867327589984, 0.96363428027274967)
normaltest(norm.rvs(size=1000))
# (2.0817923824843461, 0.35313806086602029)
normaltest(norm.rvs(size=1000))
# (0.25177398640139054, 0.88171448088503002)
normaltest(norm.rvs(size=1000))
# (2.5213062252950227, 0.2834688289515595)
normaltest(norm.rvs(size=1000))
# (2.0550957310741165, 0.35788346385342579)
normaltest(norm.rvs(size=1000))
# (4.5722298301301869, 0.10166065590209576)
normaltest(norm.rvs(size=1000))
# (3.0060164141422421, 0.22245994699827343)
normaltest(norm.rvs(size=1000))
# (1.8870291791486471, 0.38925734860089078)
normaltest(norm.rvs(size=1000))
# (0.24931060262844901, 0.88280115054104014)
其中只有一个的 p 值 < 0.05。这似乎真的坏了。我错过了什么吗?