我需要计算 python 脚本中大量数据的二项式置信区间。你知道任何可以做到这一点的python函数或库吗?
理想情况下,我希望在 python 上实现类似http://statpages.org/confint.html的功能。
谢谢你的时间。
我需要计算 python 脚本中大量数据的二项式置信区间。你知道任何可以做到这一点的python函数或库吗?
理想情况下,我希望在 python 上实现类似http://statpages.org/confint.html的功能。
谢谢你的时间。
请注意,因为它没有在此处的其他地方发布,statsmodels.stats.proportion.proportion_confint
可让您使用多种方法获得二项式置信区间。不过,它只做对称间隔。
我会说,如果您有选择,R(或其他统计数据包)可能会更好地为您服务。也就是说,如果您只需要二项式置信区间,您可能不需要整个库。这是我最天真的javascript翻译中的功能。
def binP(N, p, x1, x2):
p = float(p)
q = p/(1-p)
k = 0.0
v = 1.0
s = 0.0
tot = 0.0
while(k<=N):
tot += v
if(k >= x1 and k <= x2):
s += v
if(tot > 10**30):
s = s/10**30
tot = tot/10**30
v = v/10**30
k += 1
v = v*q*(N+1-k)/k
return s/tot
def calcBin(vx, vN, vCL = 95):
'''
Calculate the exact confidence interval for a binomial proportion
Usage:
>>> calcBin(13,100)
(0.07107391357421874, 0.21204372406005856)
>>> calcBin(4,7)
(0.18405151367187494, 0.9010086059570312)
'''
vx = float(vx)
vN = float(vN)
#Set the confidence bounds
vTU = (100 - float(vCL))/2
vTL = vTU
vP = vx/vN
if(vx==0):
dl = 0.0
else:
v = vP/2
vsL = 0
vsH = vP
p = vTL/100
while((vsH-vsL) > 10**-5):
if(binP(vN, v, vx, vN) > p):
vsH = v
v = (vsL+v)/2
else:
vsL = v
v = (v+vsH)/2
dl = v
if(vx==vN):
ul = 1.0
else:
v = (1+vP)/2
vsL =vP
vsH = 1
p = vTU/100
while((vsH-vsL) > 10**-5):
if(binP(vN, v, 0, vx) < p):
vsH = v
v = (vsL+v)/2
else:
vsL = v
v = (v+vsH)/2
ul = v
return (dl, ul)
虽然 scipy.stats 模块有一种.interval()
计算等尾置信度的方法,但它缺乏计算最高密度区间的类似方法。这是使用 scipy 和 numpy 中找到的方法的粗略方法。
此解决方案还假设您想先使用 Beta 发行版。超参数a
和b
设置为 1,因此默认先验是 0 和 1 之间的均匀分布。
import numpy
from scipy.stats import beta
from scipy.stats import norm
def binomial_hpdr(n, N, pct, a=1, b=1, n_pbins=1e3):
"""
Function computes the posterior mode along with the upper and lower bounds of the
**Highest Posterior Density Region**.
Parameters
----------
n: number of successes
N: sample size
pct: the size of the confidence interval (between 0 and 1)
a: the alpha hyper-parameter for the Beta distribution used as a prior (Default=1)
b: the beta hyper-parameter for the Beta distribution used as a prior (Default=1)
n_pbins: the number of bins to segment the p_range into (Default=1e3)
Returns
-------
A tuple that contains the mode as well as the lower and upper bounds of the interval
(mode, lower, upper)
"""
# fixed random variable object for posterior Beta distribution
rv = beta(n+a, N-n+b)
# determine the mode and standard deviation of the posterior
stdev = rv.stats('v')**0.5
mode = (n+a-1.)/(N+a+b-2.)
# compute the number of sigma that corresponds to this confidence
# this is used to set the rough range of possible success probabilities
n_sigma = numpy.ceil(norm.ppf( (1+pct)/2. ))+1
# set the min and max values for success probability
max_p = mode + n_sigma * stdev
if max_p > 1:
max_p = 1.
min_p = mode - n_sigma * stdev
if min_p > 1:
min_p = 1.
# make the range of success probabilities
p_range = numpy.linspace(min_p, max_p, n_pbins+1)
# construct the probability mass function over the given range
if mode > 0.5:
sf = rv.sf(p_range)
pmf = sf[:-1] - sf[1:]
else:
cdf = rv.cdf(p_range)
pmf = cdf[1:] - cdf[:-1]
# find the upper and lower bounds of the interval
sorted_idxs = numpy.argsort( pmf )[::-1]
cumsum = numpy.cumsum( numpy.sort(pmf)[::-1] )
j = numpy.argmin( numpy.abs(cumsum - pct) )
upper = p_range[ (sorted_idxs[:j+1]).max()+1 ]
lower = p_range[ (sorted_idxs[:j+1]).min() ]
return (mode, lower, upper)
我自己一直在尝试这个。如果它有帮助,这是我的解决方案,它需要两行代码,并且似乎为该 JS 页面提供了等效的结果。这是常客单边区间,我将输入参数称为二项式参数 theta 的 MLE(最大似然估计)。即 mle = 成功次数/试验次数。我找到了单边区间的上限。因此这里使用的 alpha 值是 JS 页面中上限的两倍。
from scipy.stats import binom
from scipy.optimize import bisect
def binomial_ci( mle, N, alpha=0.05 ):
"""
One sided confidence interval for a binomial test.
If after N trials we obtain mle as the proportion of those
trials that resulted in success, find c such that
P(k/N < mle; theta = c) = alpha
where k/N is the proportion of successes in the set of trials,
and theta is the success probability for each trial.
"""
to_minimise = lambda c: binom.cdf(mle*N,N,c)-alpha
return bisect(to_minimise,0,1)
要找到两侧区间,请使用 (1-alpha/2) 和 alpha/2 作为参数调用。
我也需要这样做。我正在使用 R 并想学习一种方法来为自己解决这个问题。我不会说它是严格的pythonic。
文档字符串解释了大部分内容。它假设你已经安装了 scipy。
def exact_CI(x, N, alpha=0.95):
"""
Calculate the exact confidence interval of a proportion
where there is a wide range in the sample size or the proportion.
This method avoids the assumption that data are normally distributed. The sample size
and proportion are desctibed by a beta distribution.
Parameters
----------
x: the number of cases from which the proportion is calulated as a positive integer.
N: the sample size as a positive integer.
alpha : set at 0.95 for 95% confidence intervals.
Returns
-------
The proportion with the lower and upper confidence intervals as a dict.
"""
from scipy.stats import beta
x = float(x)
N = float(N)
p = round((x/N)*100,2)
intervals = [round(i,4)*100 for i in beta.interval(alpha,x,N-x+1)]
intervals.insert(0,p)
result = {'Proportion': intervals[0], 'Lower CI': intervals[1], 'Upper CI': intervals[2]}
return result
一种使用威尔逊分数和对正常累积密度函数的近似值来计算相同事物的无 numpy/scipy 方法,
import math
def binconf(p, n, c=0.95):
'''
Calculate binomial confidence interval based on the number of positive and
negative events observed.
Parameters
----------
p: int
number of positive events observed
n: int
number of negative events observed
c : optional, [0,1]
confidence percentage. e.g. 0.95 means 95% confident the probability of
success lies between the 2 returned values
Returns
-------
theta_low : float
lower bound on confidence interval
theta_high : float
upper bound on confidence interval
'''
p, n = float(p), float(n)
N = p + n
if N == 0.0: return (0.0, 1.0)
p = p / N
z = normcdfi(1 - 0.5 * (1-c))
a1 = 1.0 / (1.0 + z * z / N)
a2 = p + z * z / (2 * N)
a3 = z * math.sqrt(p * (1-p) / N + z * z / (4 * N * N))
return (a1 * (a2 - a3), a1 * (a2 + a3))
def erfi(x):
"""Approximation to inverse error function"""
a = 0.147 # MAGIC!!!
a1 = math.log(1 - x * x)
a2 = (
2.0 / (math.pi * a)
+ a1 / 2.0
)
return (
sign(x) *
math.sqrt( math.sqrt(a2 * a2 - a1 / a) - a2 )
)
def sign(x):
if x < 0: return -1
if x == 0: return 0
if x > 0: return 1
def normcdfi(p, mu=0.0, sigma2=1.0):
"""Inverse CDF of normal distribution"""
if mu == 0.0 and sigma2 == 1.0:
return math.sqrt(2) * erfi(2 * p - 1)
else:
return mu + math.sqrt(sigma2) * normcdfi(p)
下面以简单的方式给出了二项分布的精确 (Clopper-Pearson) 区间。
def binomial_ci(x, n, alpha=0.05):
#x is number of successes, n is number of trials
from scipy import stats
if x==0:
c1 = 0
else:
c1 = stats.beta.interval(1-alpha, x,n-x+1)[0]
if x==n:
c2=1
else:
c2 = stats.beta.interval(1-alpha, x+1,n-x)[1]
return c1, c2
您可以通过以下方式检查代码:
p1,p2 = binomial_ci(2,7)
from scipy import stats
assert abs(stats.binom.cdf(1,7,p1)-.975)<1E-5
assert abs(stats.binom.cdf(2,7,p2)-.025)<1E-5
assert abs(binomial_ci(0,7, alpha=.1)[0])<1E-5
assert abs((1-binomial_ci(0,7, alpha=.1)[1])**7-0.05)<1E-5
assert abs(binomial_ci(7,7, alpha=.1)[1]-1)<1E-5
assert abs((binomial_ci(7,7, alpha=.1)[0])**7-0.05)<1E-5
我使用了二项式比例置信区间和正则化不完全 beta 函数之间的关系,如下所述: https ://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Clopper%E2%80%93Pearson_interval
Astropy 提供了这样一个功能(虽然安装和导入 astropy 可能有点过分):
astropy.stats.binom_conf_interval