我有以下使用 data.frames 的代码,我想知道如何使用 data.tables,使用最高效、最矢量化的代码来编写它?
数据帧代码:
set.seed(1)
to <- cbind(data.frame(time=seq(1:5),bananas=sample(100,5),apples=sample(100,5)),setNames(data.frame(matrix(sample(100,90,replace=T),nrow=5)),paste0(1:18)))
from <- cbind(data.frame(time=seq(1:5),blah=sample(100,5),foo=sample(100,5)),setNames(data.frame(matrix(sample(100,90,replace=T),nrow=5)),paste0(1:18)))
from
to
rownames(to) <- to$time
to[as.character(from$time),paste0(1:18)] <- from[,paste0(1:18)]
to
运行这个:
> set.seed(1)
> to <- cbind(data.frame(time=seq(1:5),bananas=sample(100,5),apples=sample(100,5)),setNames(data.frame(matrix(sample(100,90,replace=T),nrow=5)),paste0(1:18)))
> from <- cbind(data.frame(time=seq(1:5),blah=sample(100,5),foo=sample(100,5)),setNames(data.frame(matrix(sample(100,90,replace=T),nrow=5)),paste0(1:18)))
> from
time blah foo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 66 22 98 2 100 46 58 60 69 46 62 19 29 42 64 90 30 19 72 60
2 2 35 13 74 72 50 52 8 57 61 18 56 53 90 7 85 65 20 76 39 12
3 3 27 47 36 11 49 21 4 53 24 75 33 8 45 34 86 75 89 73 11 85
4 4 97 90 44 45 18 23 65 99 26 11 46 28 78 73 40 61 51 95 93 32
5 5 61 58 15 65 76 60 93 51 73 87 51 22 89 34 39 91 88 55 29 79
> to
time bananas apples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 27 90 21 50 94 39 49 67 83 79 48 10 92 26 34 90 44 21 24 80
2 2 37 94 18 72 22 2 60 80 65 3 87 32 30 48 84 87 72 72 6 46
3 3 57 65 69 100 66 39 50 11 79 48 44 52 46 77 35 39 40 13 65 42
4 4 89 62 39 39 13 87 19 73 56 74 25 67 34 9 34 78 33 25 88 82
5 5 20 6 77 78 27 35 83 42 53 70 8 41 66 88 48 97 76 15 78 61
>
> rownames(to) <- to$time
> to[as.character(from$time),paste0(1:18)] <- from[,paste0(1:18)]
> to
time bananas apples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 27 90 98 2 100 46 58 60 69 46 62 19 29 42 64 90 30 19 72 60
2 2 37 94 74 72 50 52 8 57 61 18 56 53 90 7 85 65 20 76 39 12
3 3 57 65 36 11 49 21 4 53 24 75 33 8 45 34 86 75 89 73 11 85
4 4 89 62 44 45 18 23 65 99 26 11 46 28 78 73 40 61 51 95 93 32
5 5 20 6 15 65 76 60 93 51 73 87 51 22 89 34 39 91 88 55 29 79
基本上,我们从的列paste0(1:18)
中更新 的列,匹配s。to
paste0(1:18)
from
time
data.table
s 显然有一些优势,比如在控制台打印它们时不需要 head,所以我正在考虑使用它们。
但是我不想:=
手动编写表达式,即尽量避免:
to[from,`1`:=i.`1`,`2`:=i.`2`, ..]
如果可能的话,我也更喜欢使用矢量化语法,而不是某种 for 循环,即尽量避免类似:
for( i in 1:18 ) {
to[from, sprintf("%d",i) := i.sprintf("%d",i)]
}
我通读了 faq 小插图和 datatable-intro 小插图,尽管我承认我可能没有 100% 理解所有内容。
我查看了循环遍历 data.table 中的列并转换这些列,但我不能说我 100% 理解它,而且似乎说我需要使用 for 循环?
在 8374816 的底部似乎确实有某种暗示,可能只使用数据框语法,添加with=FALSE
? 但是由于 data.frame 过程正在对行名称进行黑客攻击,我不确定它的效果如何/是否有效,我想知道它在多大程度上利用了 data.table 的效率?