6

确定斐波那契数列很容易弄清楚:

int num = 0;
int num2 = 1;
int loop;
int fibonacci;
System.out.print(num2);
for (loop = 1; loop <= 10; loop ++)
{
    fibonacci = num + num2;
    num = num2;
    num2 = fibonacci;
    System.out.print(" " + fibonacci);
}

我的问题在于试图确定指定N的值。如,如果我想找到序列中的第 6 个元素,即 8,我将如何找到那个数字,并且只有那个数字?

4

7 回答 7

9

在您的代码中,num从第 0斐波那契数开始,然后num1作为第 1。因此,要找到第 n,您必须迭代步数n

for (loop = 0; loop < n; loop ++)
{
    fibonacci = num + num2;
    num = num2;
    num2 = fibonacci;
}
System.out.print(num);

并且仅在完成后打印。

当循环计数器loop的值为k时,num保存第 k斐波那契数和num2第 (k+1)

于 2012-10-22T22:56:07.387 回答
1

要找到第 n 个数字,我们需要知道斐波那契数的长度。Integer.toString(int)您可以使用 Java 的函数将 int 转换为字符串。使用该字符串,可以确定转换后的斐波那契数的长度。

编辑:删除代码 b/c 可能是 hwk 问题

于 2012-10-22T23:06:20.650 回答
1
int n=5;//position of the fibonacci number to find
int fibonacci=0,num=0,num2=1;
for(int loop=1;loop<n;loop++)
{
   fibonacci=num+num2;
   num=num2;
   num2=fibonacci;
}
System.out.println(num);
于 2019-05-08T07:40:07.677 回答
0
import java.util.Scanner;
public class fibonacci{
public static void main(String[]args){
    Scanner i=new Scanner(System.in);
    String n=System.getProperty("line.separator");

    int count=0,x=0,y=1,sum;

    System.out.println("Enter a number:  ");
    int n=i.nextInt();

    for(count=0;count<n;count++){
        System.out.print(" "+ x);
        sum=x+y;
        x=y;
        y=sum;
    }
  }
}
于 2017-08-10T13:31:20.397 回答
0
public static void main(String[] args) {
    Scanner s = new Scanner(System.in);
    
    int n = s.nextInt();
    int num = 1;
    int num2 = 1;
    int fibonacci;
 
    for (int i=1; i<n; i++) {
        fibonacci = num + num2;
        num = num2;
        num2 = fibonacci;
    }
    System.out.print(num);
}
于 2021-06-26T07:22:29.437 回答
0

我希望我的回答有帮助。我试图用动态编程方法来解决它。您只需要跟踪两个元素直到 n 之前的一个索引。当您的代码在那里时,答案将是元素 n-1 和 n-2 的总和。

public class Fibonacci {

public static void main(String[] args) {
    System.out.println(fib(12));
}

/**
 * Calculate the Fibonacci of n with two int variables and one temp variable. This is using dynamic programming.
 * Time complexity of this approach is O(n). Space complexity of this approach is O(k).
 * 0,1,1,2,3,5,8,13,21,34,55,89,144,...
 *
 *
 * @param n The nth Fibonacci number
 * @return The nth Fibonacci
 */
public static int fib(int n) {
    if (n == 0 || n == 1) {
        return n;
    }
    // Element 1
    int element1 = 0;
    // Element 2
    int element2 = 1;
    // Move the 2 elements window till one index before the nth.
    for (int i = 2; i < n; i++) {
        // Move the 2 elements window forward.
        int temp = element2;
        element2 = element1 + element2;
        element1 = temp;
    }
    // Return the nth Fibonacci by summing Fibonacci n-1 and n-2
    return element1 + element2;
}

}

于 2020-03-11T02:27:30.230 回答
-1
import acm.program.*;

public class FibonacciToN extends ConsoleProgram {

    public void run() {

        println("This program will display a table of Fibonacci numbers up to value n.");
        int n = readInt("Enter an integer for value n: ");
        int result = sequence(n);  

    }

    private int sequence(int n) {

        int a = 0;
        int b = 1;

        while (a < n) {  
            println(a); 
            a = a + b;
            b = a - b;
            }

        return a;
    }
}
于 2013-03-24T14:47:59.243 回答