8

相关问题

这个问题非常相关,但已有 2 年历史:In memory OLAP engine in Java

背景

我想在内存中从给定的表格数据集中创建一个类似数据透视表的矩阵

例如,按婚姻状况计数的年龄(行是年龄,列是婚姻状况)。

  • 输入:人员列表,包括年龄和一些布尔属性(例如已婚),

  • 期望的输出:人数,按年龄(行)和已婚(列)

我尝试过的(Scala)

case class Person(val age:Int, val isMarried:Boolean)

...
val people:List[Person] = ... //

val peopleByAge = people.groupBy(_.age)  //only by age
val peopleByMaritalStatus = people.groupBy(_.isMarried) //only by marital status

我设法以幼稚的方式做到这一点,首先按年龄分组,然后按婚姻状况map进行 分组count,并输出结果,然后我foldRight进行汇总

TreeMap(peopleByAge.toSeq: _*).map(x => {
    val age = x._1
    val rows = x._2
    val numMarried = rows.count(_.isMarried())
    val numNotMarried = rows.length - numMarried
    (age, numMarried, numNotMarried)
}).foldRight(List[FinalResult]())(row,list) => {
     val cumMarried = row._2+ 
        (if (list.isEmpty) 0 else list.last.cumMarried) 
     val cumNotMarried = row._3 + 
        (if (list.isEmpty) 0 else l.last.cumNotMarried) 
     list :+ new FinalResult(row._1, row._2, row._3, cumMarried,cumNotMarried) 
}.reverse

我不喜欢上面的代码,效率不高,难以阅读,而且我确信有更好的方法。

问题

我如何按“两者”分组?以及如何对每个子组进行计数,例如

有多少人正好30岁结婚?

另一个问题,是我如何做一个总计,来回答这个问题:

30岁以上结婚的有多少?


编辑:

谢谢你所有的好答案。

只是为了澄清,我希望输出包含一个带有以下列的“表”

  • 年龄(升序)
  • 已婚
  • 未婚人数
  • 运行总已婚
  • 跑步总未婚

不仅要回答这些特定的查询,还要生成一份报告,以便回答所有此类问题。

4

4 回答 4

4

你可以

val groups = people.groupBy(p => (p.age, p.isMarried))

进而

val thirty_and_married = groups((30, true))._2
val over_thirty_and_married_count = 
  groups.filterKeys(k => k._1 > 30 && k._2).map(_._2.length).sum
于 2012-10-19T19:02:58.643 回答
4

这是一个更冗长的选项,但以通用方式而不是使用严格的数据类型来执行此操作。你当然可以使用泛型来使它更好,但我想你明白了。

/** Creates a new pivot structure by finding correlated values 
  * and performing an operation on these values
  *
  * @param accuOp the accumulator function (e.g. sum, max, etc)
  * @param xCol the "x" axis column
  * @param yCol the "y" axis column
  * @param accuCol the column to collect and perform accuOp on
  * @return a new Pivot instance that has been transformed with the accuOp function
  */
def doPivot(accuOp: List[String] => String)(xCol: String, yCol: String, accuCol: String) = {
  // create list of indexes that correlate to x, y, accuCol
  val colsIdx = List(xCol, yCol, accuCol).map(headers.getOrElse(_, 1))

  // group by x and y, sending the resulting collection of
  // accumulated values to the accuOp function for post-processing
  val data = body.groupBy(row => {
    (row(colsIdx(0)), row(colsIdx(1)))
  }).map(g => {
    (g._1, accuOp(g._2.map(_(colsIdx(2)))))
  }).toMap

  // get distinct axis values
  val xAxis = data.map(g => {g._1._1}).toList.distinct
  val yAxis = data.map(g => {g._1._2}).toList.distinct

  // create result matrix
  val newRows = yAxis.map(y => {
    xAxis.map(x => {
      data.getOrElse((x,y), "")
    })
  })

 // collect it with axis labels for results
 Pivot(List((yCol + "/" + xCol) +: xAxis) :::
   newRows.zip(yAxis).map(x=> {x._2 +: x._1}))
}

我的 Pivot 类型非常基本:

class Pivot(val rows: List[List[String]]) {

  val headers = rows.head.zipWithIndex.toMap
  val body    = rows.tail
  ...
}

为了测试它,你可以做这样的事情:

val marriedP = Pivot(
  List(
    List("Name", "Age", "Married"),
    List("Bill", "42", "TRUE"),
    List("Heloise", "47", "TRUE"),
    List("Thelma", "34", "FALSE"),
    List("Bridget", "47", "TRUE"),
    List("Robert", "42", "FALSE"),
    List("Eddie", "42", "TRUE")

  )
)

def accum(values: List[String]) = {
    values.map(x => {1}).sum.toString
}
println(marriedP + "\n")
println(marriedP.doPivot(accum)("Age", "Married", "Married"))

产生:

Name     Age      Married  
Bill     42       TRUE     
Heloise  47       TRUE     
Thelma   34       FALSE    
Bridget  47       TRUE     
Robert   42       FALSE    
Eddie    42       TRUE     

Married/Age  47           42           34           
TRUE         2            2                         
FALSE                     1            1 

好处是您可以使用柯里化来传递任何函数的值,就像在传统的 excel 数据透视表中一样。

更多可以在这里找到:https ://github.com/vinsonizer/pivotfun

于 2012-10-20T03:31:15.707 回答
1

我觉得直接用scount上的方法会更好List

对于问题 1

people.count { p => p.age == 30 && p.isMarried }

对于问题 2

people.count { p => p.age > 30 && p.isMarried }

如果您还想要符合这些谓词的实际人群使用过滤器。

people.filter { p => p.age > 30 && p.isMarried }

您可能可以通过只进行一次遍历来优化这些,但这是一个要求吗?

于 2012-10-19T18:55:53.047 回答
1

您可以使用元组进行分组:

val res1 = people.groupBy(p => (p.age, p.isMarried)) //or
val res2 = people.groupBy(p => (p.age, p.isMarried)).mapValues(_.size) //if you dont care about People instances

你可以这样回答这两个问题:

res2.getOrElse((30, true), 0)
res2.filter{case (k, _) => k._1 > 30 && k._2}.values.sum
res2.filterKeys(k => k._1 > 30 && k._2).values.sum // nicer with filterKeys from Rex Kerr's answer

您可以使用 List 上的方法计数来回答这两个问题:

people.count(p => p.age == 30 && p.isMarried)
people.count(p => p.age > 30 && p.isMarried)

或使用过滤器和大小:

people.filter(p => p.age == 30 && p.isMarried).size
people.filter(p => p.age > 30 && p.isMarried).size

编辑:您的代码稍微干净的版本:

TreeMap(peopleByAge.toSeq: _*).map {case (age, ps) =>
    val (married, notMarried) = ps.span(_.isMarried)
    (age, married.size, notMarried.size)
  }.foldLeft(List[FinalResult]()) { case (acc, (age, married, notMarried)) =>
    def prevValue(f: (FinalResult) => Int) = acc.headOption.map(f).getOrElse(0)
    new FinalResult(age, married, notMarried, prevValue(_.cumMarried) + married, prevValue(_.cumNotMarried) + notMarried) :: acc
  }.reverse 
于 2012-10-19T19:13:27.183 回答